Advertisement

Molecular Breeding

, 38:32 | Cite as

De novo transcriptome analysis of abiotic stress-responsive transcripts of Hevea brasiliensis

  • M. B. Mohamed SathikEmail author
  • Lisha P. Luke
  • Anantharamanan Rajamani
  • Linu Kuruvilla
  • K. V. Sumesh
  • Molly Thomas
Article

Abstract

Cultivation of Hevea brasiliensis, which is being expanded to non-traditional regions, is constrained due to the adverse environmental conditions like extreme drought with high light and low humidity during summer and low temperature with high light during winter, prevailing in these regions. Many attempts are being made to develop drought and low-temperature tolerant varieties of Hevea brasiliensis by both conventional and modern methods of breeding. For this purpose, identification of candidate genes/markers associated with drought/cold tolerance is essential. In this attempt, transcriptome sequencing was performed in leaf samples of H. brasiliensis exposed to drought as well as cold stresses using Illumina sequencing technology (RNA-Seq) in order to generate functional genomic resource data which might eventually provide details on molecular mechanisms underlying drought/cold responses in H. brasiliensis Annotated transcriptome data of both drought and cold stress-responsive transcripts were analyzed and further validated by quantitative gene expression analyses. The digital gene expression analysis indicated an upregulation of 268 transcripts and downregulation of 566 transcripts under drought stress while 961 and 109 transcripts were found up- and down regulated respectively, under cold stress. Quantitative gene expression analysis of selected drought-responsive transcripts revealed the association between transcripts such as ferritin, DNA-binding protein, NAC tf and aquaporin with drought tolerance, and ethylene-responsive transcription factor (ERF) with cold tolerance. These results will enrich the available transcriptome data on H. brasiliensis and would enable the discovery of more genes/markers associated with drought or cold tolerance which can be employed in breeding for drought/cold tolerance in H. brasiliensis

Keywords

Abiotic stress Hevea brasiliensis Drought Low temperature NGS Quantitative gene expression Stress tolerance markers Transcriptome sequencing 

Abbreviations

NR

Natural rubber

PS II

Photosystem II

TPD

Tapping panel dryness

ORF

Open reading frame

GO

Gene ontology

DE

Differentially expressed

DGE

Differential gene expression

Notes

Acknowledgements

The authors thank Dr. Annamalainathan, Joint Director, Plant Physiology Division, RRII, Dr. Kavitha K. Mydin, Joint Director (Crop Improvement), RRII, and Dr. James Jacob, Director of Research, RRII, for their constant support and help throughout the course of the study. The authors are thankful to RRII, Rubber Board, for funding the project. Lisha P Luke is grateful to RRII for the Senior Research Fellowship provided by the RRII. Linu Kuruvilla is grateful to the Council for Scientific and Industrial Research, Government of India, for the Senior Research Fellowship. The authors are also thankful to Ms. Neethu N. Nair, CSIR JRF, for her editorial help in this MS.

Supplementary material

11032_2018_782_MOESM1_ESM.docx (198 kb)
ESM 1 (DOCX 197 kb)
11032_2018_782_MOESM2_ESM.docx (19 kb)
ESM 2 (DOCX 18 kb)

References

  1. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:106CrossRefGoogle Scholar
  2. Annamalainathan K, George G, Joy S, Thomas S, Jacob J (2010) Drought induced changes in photosynthesis and chloroplast proteins in young plants of Hevea brasiliensis. J Nat Rub Res 23(1&2):55–63Google Scholar
  3. Ashburner M, Ball CA, Blake JA, Botstein D et al (2000) Gene ontology: tool for the unification of biology. Nat Gen 25(1):25–29CrossRefGoogle Scholar
  4. Becana M, Moran JF, Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201(1):137–147.  https://doi.org/10.1023/A:1004375732137 CrossRefGoogle Scholar
  5. Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F (2010) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105(5):811–822.  https://doi.org/10.1093/aob/mcp128 CrossRefPubMedGoogle Scholar
  6. Chandrasekhar TR, Jana MK, Thomas J, Vijayakumar KR, Sethuraj MR (1990) Seasonal changes in physiological characteristics and yield in newly opened trees of Hevea brasiliensis in North Konkan. I J Nat Rub Res 3:88–97Google Scholar
  7. Chao J, Chen Y, Wu S, Tian W (2015) Comparative transcriptome analysis of latex from rubber tree genotype CATAS8-79 and PR107 reveals new cues for the regulation of latex regeneration and duration of latex flow. BMC Plant Biol 15(1):104.  https://doi.org/10.1186/s12870-015-0488-3 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ethylene response factor 1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162(3):1566–1582.  https://doi.org/10.1104/pp.113.221911 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cheng H, Cai H, Fu H, An Z, Fang J, Hu Y, Guo D, Huang H (2015) Functional characterization of Hevea brasiliensis CRT/DRE Binding Factor 1 gene revealed regulation potential in the CBF pathway of tropical perennial tree. PLoS One 10(9):e0137634.  https://doi.org/10.1371/journal.pone.0137634 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chow KS, Ghazali AK, Hoh CC, Mohd-Zainuddin Z (2014) RNA sequencing read depth requirement for optimal transcriptome coverage in Hevea brasiliensis. BMC Res Notes 7(1):69.  https://doi.org/10.1186/1756-0500-7-69
  11. Chye ML, Kush A, Tan CT, Chua NH (1991) Characterization of cDNA and genomic genotypes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Hevea brasiliensis. Plant Mo1 Biol 16(4):567–577.  https://doi.org/10.1007/BF00023422 CrossRefGoogle Scholar
  12. Das G, Reju MJ, Mondal GC, Singh RP, Thapliyal AP, Chaudhuri D (2013) Adaptation of Hevea brasiliensis genotypes in three widely different cold prone areas of northeastern India. I J Plant Physiol 18:84–89Google Scholar
  13. De Laat DM, Colombo CA, Chiorato AF, Carbonell SA (2014) Induction of ferritin synthesis by water deficit and iron excess in common bean (Phaseolus vulgaris L.) Mol Biol Rep 41(3):1427–1435CrossRefGoogle Scholar
  14. De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock (Augusta, Ga) 11(1):1–12.  https://doi.org/10.1097/00024382-199901000-00001 CrossRefGoogle Scholar
  15. Devakumar AS, Sathik MBM, Jacob J, Annamalainathan K, Gawaiprakash P, Vijayakumar KR (1998) Effects of atmospheric and soil drought on growth and development of Hevea brasiliensis. J Rub Res 1(3):190–198Google Scholar
  16. Devakumar AS, Sathik MBM, Sreelatha S, Thapliyal AP, Jacob J (2002) Photosynthesis in mature trees of Hevea brasiliensis experiencing drought and cold stresses concomitant with high light in the field. I J Nat Rub Res 15:1–13Google Scholar
  17. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis tool kit for the agricultural community. Nucleic Acids Res 38(suppl_2):W64–W70.  https://doi.org/10.1093/nar/gkq310 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50(2):237–244.  https://doi.org/10.1023/A:1016028530943 CrossRefPubMedGoogle Scholar
  19. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107(1):1–15.  https://doi.org/10.1038/hdy.2010.152 CrossRefPubMedGoogle Scholar
  20. Fang Y, Mei H, Zhou B, Xiao X, Yanga M, Huang Y, Long X, Hu S, Tang C (2016) De novo transcriptome analysis reveals distinct defense mechanisms by young and mature leaves of Hevea brasiliensis (Para Rubber Tree). Sci Rep 6(1):33151.  https://doi.org/10.1038/srep33151 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feige U, Morimoto R, Yahara I, Polla BS (1996) Stress inducible cellular responses. Birkhauser-Verlag, Basel, p 492Google Scholar
  22. Finn RD, Bateman A, Clements J, Coggil P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(database issue):D222–D230.  https://doi.org/10.1093/nar/gkt1223 CrossRefPubMedGoogle Scholar
  23. Gao F, Zhou YJ, Zhu WP, Li XF, Fan LM, Zhang GF (2009) Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta 230(5):1033–1046.  https://doi.org/10.1007/s00425-009-1003-6 CrossRefPubMedGoogle Scholar
  24. Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46(4):601–612.  https://doi.org/10.1111/j.1365-313X.2006.02723.x CrossRefPubMedGoogle Scholar
  25. Gupta SC, Sharma A, Mishra M, Mishra R, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86(11-12):377–384.  https://doi.org/10.1016/j.lfs.2009.12.015 CrossRefPubMedGoogle Scholar
  26. Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjarvi S, Aro EM et al (2012) Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. J Exp Bot 63(3):1445–1459.  https://doi.org/10.1093/jxb/err386 CrossRefPubMedGoogle Scholar
  27. Henikoff S, Greene EA, Pietrokovski S, Bork P, Attwood TK, Hood L (1997) Gene families: the taxonomy of protein paralogs and chimeras. Science 278(5338):609–614.  https://doi.org/10.1126/science.278.5338.609 CrossRefPubMedGoogle Scholar
  28. Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. P Natl Acad USA 97(6):2405–2407.  https://doi.org/10.1073/pnas.97.6.2405 CrossRefGoogle Scholar
  29. Huang ZD, Pan YQ (1992) Rubber cultivation under climatic stresses in China. In: Sethuraj MR, Mathew NM (eds) Natural rubber: biology, cultivation and technology. Elsevier Science Publishers, Netherlands, pp 220–238Google Scholar
  30. Jacob J, Annamalainathan K, Alam B, Sathik MBM, Thapliyal AP, Devakumar AS (1999) Physiological constraints for cultivation of Hevea brasiliensis in certain unfavorable agroclimatic regions of India. Indian J Nat Rubber Res 12:1–16Google Scholar
  31. Kang Y, Udvardi M (2012) Global regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery. Plant Signal Behav 7(5):539–543.  https://doi.org/10.4161/psb.19780 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book/Am Soc Plant Biol 9:e0153.  https://doi.org/10.1199/tab.0153 Google Scholar
  33. Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park CM (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18(11):3132–3144.  https://doi.org/10.1105/tpc.106.043018 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226(3):647–654.  https://doi.org/10.1007/s00425-007-0513-3 CrossRefPubMedGoogle Scholar
  35. Ko JH, Chow KS, Han KH (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (Para Rubber Tree). Plant Mol Biol 53(4):479–492.  https://doi.org/10.1023/B:PLAN.0000019119.66643.5d CrossRefPubMedGoogle Scholar
  36. Ko JH, Yang SH, Park AH, Leeouxel O, Han KH (2007) ANAC012, a member of the plant-specific NAC transcription factor family negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J 50(6):1035–1048.  https://doi.org/10.1111/j.1365-313X.2007.03109.x CrossRefPubMedGoogle Scholar
  37. Kush A, Goyvaerts E, Chye ML, Chua NH (1990) Laticifer-specific gene expression in Hevea brasiliensis (rubber tree). P Natl Acad Sci USA 87(5):1787–1790.  https://doi.org/10.1073/pnas.87.5.1787 CrossRefGoogle Scholar
  38. Lee B, Henderson DA, Zhu JK (2005) The Arabidopsis cold responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155–3175.  https://doi.org/10.1105/tpc.105.035568 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li D, Deng Z, Qin B, Liu X, Men Z (2012) De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.) BMC Genomics 13(1):192.  https://doi.org/10.1186/1471-2164-13-192 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Li D, Hao L, Liu H, Zhao M, Deng Z, Li Y, Zeng R, Tian W (2015) Next-generation sequencing, assembly and comparative analyses of the latex transcriptomes from two elite Hevea brasiliensis varieties. Tree Genet Genomes 11(5):98.  https://doi.org/10.1007/s11295-015-0928-0 CrossRefGoogle Scholar
  41. Li D, Wang X, Deng Z, Liu H, Yang H, He G (2016) Transcriptome analyses reveal molecular mechanism underlying tapping panel dryness of rubber tree (Hevea brasiliensis). Sci Rep 6(1):23540.  https://doi.org/10.1038/srep23540 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCP1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420(1):57–65.  https://doi.org/10.1016/j.gene.2008.05.006 CrossRefPubMedGoogle Scholar
  43. Liu JP, Xia ZQ, Tian XY, Li YJ (2015) Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis Muell.) to discover putative genes associated with tapping panel dryness (TPD). BMC Genomics 16(1):398.  https://doi.org/10.1186/s12864-015-1562-9 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Luke LP, Sathik MBM, Thomas M, Kuruvilla L, Sumesh KV, Annamalainathan K (2015) Quantitative expression analysis of drought responsive genes in genotypes of Hevea with varying levels of drought tolerance. Physiol Mol Biol Pla 21(2):179–186.  https://doi.org/10.1007/s12298-015-0288-0 CrossRefGoogle Scholar
  45. Luke LP, Sathik MBM, Thomas M, Kuruvilla L, Sumesh KV (2017) Expression of NAC transcription factor is altered under intermittent drought stress and re-watered conditions in Hevea brasiliensis. J Plant Biotechnol 44(2):142–148.  https://doi.org/10.5010/JPB.2017.44.2.142
  46. Mantello CC, Cardoso-Silva CB, da Silva CC, de Souza LM, Scaloppi Jr EJ, de Souza Goncalves P, Vicentini R, de Souza AP (2014) De novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways. PLoS One 9(7):e102665.  https://doi.org/10.1371/journal.pone.0102665 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9(1):e84359.  https://doi.org/10.1371/journal.pone.0084359 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione S conjugate export pump in the vacuolar membrane of plants. Nature 364(6434):247–249.  https://doi.org/10.1038/364247a0 CrossRefGoogle Scholar
  49. Mingler MK, Hingst AM, Clement SL, Yu LE, Reifur L, Koslowsky DJ (2006) Identification of pentatricopeptide repeat proteins in Trypanosoma brucei. Mol Biochem Parasitol 150(1):37–45.  https://doi.org/10.1016/j.molbiopara.2006.06.006 CrossRefPubMedGoogle Scholar
  50. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96.  https://doi.org/10.1016/j.bbagrm.2011.08.004 CrossRefPubMedGoogle Scholar
  51. Morimoto RI, Tissieres A, Georgopoulos C (1994) Heat shock proteins: structure, Function and Regulation. Cold Spring Harbor Lab Press, Cold Spring HarborGoogle Scholar
  52. Muller M, Munne-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169(1):32–41.  https://doi.org/10.1104/pp.15.00677 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Plant Physiol 126(1):62–71.  https://doi.org/10.1111/j.1399-3054.2005.00592.x CrossRefGoogle Scholar
  54. Peng X, Teng L, Yan X, Zhao M, Shen S (2015) The cold responsive mechanism of the paper mulberry: decreased photosynthesis capacity and increased starch accumulation. BMC Genomics 16(1):898.  https://doi.org/10.1186/s12864-015-2047-6 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Polhamus LG (1962) Rubber: botany, production and utilization. Interscience Publisher Inc., New York, p 449Google Scholar
  56. Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35(1):15–44.  https://doi.org/10.1146/annurev.pp.35.060184.000311 CrossRefGoogle Scholar
  57. Priyadarshan PM, Hoa TTT, Huasun H, Goncalves PSS (2005) Yielding potential of rubber (Hevea brasiliensis) in suboptimal environments. J Crop Improv 14(1-2):221–247.  https://doi.org/10.1300/J411v14n01_10 CrossRefGoogle Scholar
  58. Rahman A (2013) Auxin: a regulator of cold stress responses. Physiol Plantarum 147(1):28–35.  https://doi.org/10.1111/j.1399-3054.2012.01617.x CrossRefGoogle Scholar
  59. Ray D, Raj S, Das G, Dey SK (2004) Reduced membrane damage and higher LEA protein content under low temperature: probable causes for delayed defoliation of Hevea in North East India. Nat Rubber Res 17(1):79–85Google Scholar
  60. Renaut J, Hausman JF, Wisniewski ME (2006) Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plantarum 126(1):97–109.  https://doi.org/10.1111/j.1399-3054.2006.00617.x CrossRefGoogle Scholar
  61. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold- inducible gene expression. Biochem Biophy Res Co 290(3):998–1009.  https://doi.org/10.1006/bbrc.2001.6299 CrossRefGoogle Scholar
  62. Salgado RL, Koop MD, Guariz Pinheiro GD, Rivallan R, Le Guen V, Nicolás MF, De Almeida LGP, Rocha RV, Magalhaes M, Gerber AL, Figueira A, De Mattos Cascardo JC, Ribeiro de Vasconcelos AT, Araújo Silva AW, Coutinho LL, Garcia D (2014) De novo transcriptome analysis of Hevea brasiliensis tissues by RNA-seq and screening for molecular markers. BMC Genomics 15(1):236.  https://doi.org/10.1186/1471-2164-15-236 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sarkar J, Remya B, Annamalainathan K, Krishnakumar R (2013) Cold responses of Hevea brasiliensis under controlled environmental conditions. Rubber Sci 26(2):228–237Google Scholar
  64. Sathik MBM, Devakumar AS, Jacob J, Thapliyal AP, Pothen J, Dey SK, Sethuraj MR (1998) Light induced inhibition of photosynthesis in Hevea brasiliensis under drought and cold stress. National Symposium of Society for Plant Physiology and Biochemistry. University of Hyderabad, India, p 122Google Scholar
  65. Sathik MBM, Kuruvilla L, Thomas M, Luke LP, Satheesh PR, Annamalainathan K, Jacob J (2012) Quantitative expression analysis of stress responsive genes under cold stress in Hevea brasiliensis. Rubber Sci 25:199–213Google Scholar
  66. Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56(416):1481–1489.  https://doi.org/10.1093/jxb/eri181 CrossRefPubMedGoogle Scholar
  67. Schultz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-Seq assembly across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092.  https://doi.org/10.1093/bioinformatics/bts094 CrossRefGoogle Scholar
  68. Schuster SC (2008) Next-generation sequencing transforms today's biology. Nat Methods 5(1):16–18.  https://doi.org/10.1038/nmeth1156 CrossRefPubMedGoogle Scholar
  69. Sethuraj MR, Rao CC, Raghavendra AS (1984) The pattern of latex flow from rubber tree (Hevea brasiliensis) in relation to water stress. J Cell Biochem 8B:5–236Google Scholar
  70. Silva CC, Mantello CC, Campos T, Souza LM, Goncalves PS, Souza AP (2014) Leaf-, panel- and latex-expressed sequenced tags from the rubber tree (Hevea brasiliensis) under cold-stressed and suboptimal growing conditions: the development of gene-targeted functional markers for stress response. Mol Breed 34(3):1035–1053.  https://doi.org/10.1007/s11032-014-0095-2 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ethylene-insensitive3 and ethylene-response-factor1. Genes Dev 12(23):3703–3714.  https://doi.org/10.1101/gad.12.23.3703 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, Grusak MA, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230(5):985–1002.  https://doi.org/10.1007/s00425-009-1000-9 CrossRefPubMedGoogle Scholar
  73. Sreelatha S, Simon SP, Kurup GM, Vijayakumar KR (2007) Biochemical mechanisms associated with low yield during stress in Hevea genotype RRII 105. J Rubber Res 10:107–150Google Scholar
  74. Sreelatha S, Mydin KK, Simon SP, Krishnakumar R, Jacob J, Annamalainathan K (2011) Seasonal variations in yield and associated biochemical changes in RRII 400 series genotypes of Hevea brasiliensis. Nat Rubber Res 24:117–123Google Scholar
  75. Srivastava AK, Penna S, Nguyen DV, Tran LSP (2014) Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit Rev Biotechnol 36(3):389–398.  https://doi.org/10.3109/07388551.2014.973367 PubMedGoogle Scholar
  76. Sumesh KV, Satheesh PR, Annamalainathan K, Krishnakumar R, Thomas M, Jacob J (2011) Physiological evaluation of a few modern Hevea genotypes for intrinsic drought tolerance. Nat Rubber Res 24:61–67Google Scholar
  77. Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8(1):125.  https://doi.org/10.1186/1471-2164-8-125 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tang C et al (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 23(2(6)):16073.  https://doi.org/10.1038/NPLANTS.2016.73 CrossRefGoogle Scholar
  79. Tang Q, Ma XJ, Mo CM, Wilson IW, Song C, Zhao H, Yang Y, Fu W, Qiu D (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA seq and digital gene expression analysis. BMC Genomics 12(1):343.  https://doi.org/10.1186/1471-2164-12-343 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Thomas M, Sathik MBM, Saha T, Jacob J, Schaffner AR, Luke LP, Kuruvilla L, Annamalainathan K, Krishnakumar R (2011) Screening of drought responsive transcripts of Hevea brasiliensis and identification of candidate genes for drought tolerance. J Plant Biol 38&39:111–118Google Scholar
  81. Thomas M, Sathik MBM, Luke LP, Sumesh KV, Satheesh PR, Annamalainathan K, Jacob J (2012) Stress responsive transcripts and their association with drought tolerance in Hevea brasiliensis. J Plant Crops 40:180–187Google Scholar
  82. Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S, Sraphet S, Yoocha T, Sangsrakru D, Chanprasert J, Ngamphiw C, Jomchai N, Therawattanasuk K, Tangphatsornruang S (2011) Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Res 18(6):471–482.  https://doi.org/10.1093/dnares/dsr034 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Van Verk MC, Hickman R, Pieterse CMJ, Van Wees SCM (2013) RNA-Seq: revelation of the messengers. Trends Plant Sci 18(4):175–179.  https://doi.org/10.1016/j.tplants.2013.02.001 CrossRefPubMedGoogle Scholar
  84. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63.  https://doi.org/10.1038/nrg2484 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun XL, Chen LJ, Zhu YM (2011) A novel glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol 168(11):1241–1248.  https://doi.org/10.1016/j.jplph.2011.01.016 CrossRefPubMedGoogle Scholar
  86. Wang J, Pan C, Wang Y, Ye L, Wu J, Chen L, Zou T, Lu G (2015) Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics 16(1):386.  https://doi.org/10.1186/s12864-015-1621-2 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X (2011) RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol 77(3):299–308.  https://doi.org/10.1007/s11103-011-9811-z CrossRefPubMedGoogle Scholar
  88. Xu ZS, Chen M, Li LC, Ma YZ (2008) Functions of the ERF transcription factor family in plants. Botany 86(9):969–977.  https://doi.org/10.1139/B08-041 CrossRefGoogle Scholar
  89. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092.  https://doi.org/10.3389/fpls.2015.01092 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829.  https://doi.org/10.1101/gr.074492.107 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhang H, Li A, Zhang Z, Lu P, Zhang D, Liu X, Zhang ZF, Huang R (2016) Ethylene response factor TERF1, regulated by ethylene-insensitive3-like factors, functions in reactive oxygen species (ROS) scavenging in tobacco (Nicotiana tabacum L.) Sci Rep 6:29948.  https://doi.org/10.1038/srep29948 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Rubber Research Institute of IndiaKottayamIndia

Personalised recommendations