Constructing high-density genetic maps for polyploid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance

Abstract

Sugarcane (Saccharum spp.) is an important economic crop for producing edible sugar and bioethanol. Brown rust has long been a major disease impacting sugarcane production worldwide. Resistance resource and markers linked to resistance are valuable tools for disease resistance improvement. An F1 segregating population derived from a cross between two hybrid sugarcane clones, brown rust-susceptible CP95-1039 and brown rust-resistant CP88-1762, were genotyped using genotyping by sequencing approach and also phenotyped in a replicated field trial. Single nucleotide polymorphism (SNP) and presence/absence markers were called with seven different pipelines to maximize reliable marker identification. High-density maps were constructed for both parental clones with a total map length of 4224.4 cM, and a marker density of one marker per 1.7 cM for CP95-1039, and a total map length of 4373.2 cM, and one marker per 2.0 cM for CP88-1762. Among the seven SNP callers, Tassel and Genome Analysis ToolKit performed better than other callers in single-dose SNP detection and contribution to genetic maps. Two major quantitative trait loci (QTL) controlling brown rust resistance were identified, which can explain 21 and 30% of the phenotypic variation, respectively. The genetic maps generated here will improve our understanding of sugarcane’s complex genome structure and discovery of underlying sequence variations controlling agronomic traits. The putative QTL controlling brown rust resistance can effectively be utilized in sugarcane breeding programs to expedite the selection process of brown rust resistance after validation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Aitken KS, McNeil MD, Hermann S, Bundock PC, Kilian A, Heller-Uszynska K, Henry RJ, Li J (2014a) A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput diversity array technology (DArT) markers. BMC Genomics 15:1

    Article  Google Scholar 

  2. Aitken KS, McNeil MD, Berkman PJ, Hermann S, Kilian A, Bundock PC, Li J (2014b) Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC Plant Biol 14:190

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alwala S, Kimbeng CA, Veremis JC, Gravois KA (2008) Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica 164:37–51

    CAS  Article  Google Scholar 

  4. Alwala S, Kimbeng C (2010) Molecular genetic linkage mapping in Saccharum: strategies, resource and achievements. In: Henry R, Kole C (eds) Genetics, genomics and breeding of sugarcane. Science Publishers, New Hampshire, pp 69–96

  5. Balsalobre TWA, da Silva PG, Margarido GRA, Gazaffi R, Barreto FZ, Anoni CO, Cardoso-Silva CB, Costa EA, Mancini MC, Hoffmann HP (2017) GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 18:72

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bourke PM, Voorrips RE, Visser RG, Maliepaard C (2015) The double-reduction landscape in tetraploid potato as revealed by a high-density linkage map. Genetics 201:853–863

    Article  PubMed  PubMed Central  Google Scholar 

  7. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140

    Article  PubMed  PubMed Central  Google Scholar 

  8. Costet L, Le Cunff L, Royaert S, Raboin L, Hervouet C, Toubi L, Telismart H, Garsmeur O, Rousselle Y, Pauquet J (2012) Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theor Appl Genet 125:825–836

    CAS  Article  PubMed  Google Scholar 

  9. Dahlquist E (2013) Biomass as energy source: resources, systems and applications. CRC Press, Taylor & Francis, London

  10. Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, d'Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064

    CAS  Article  PubMed  Google Scholar 

  11. Deren CW (1995) Genetic base of US mainland sugarcane. Crop Sci 35:1195–1199

    Article  Google Scholar 

  12. D'Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  Google Scholar 

  13. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907

  15. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346

    Article  PubMed  PubMed Central  Google Scholar 

  16. Glynn NC, Laborde C, Davidson RW, Irey MS, Glaz B, D’Hont A, Comstock JC (2013) Utilization of a major brown rust resistance gene in sugarcane breeding. Mol Breed 31:323–331

    CAS  Article  Google Scholar 

  17. Goldemberg J (2008) The Brazilian biofuels industry. Biotechnol Biofuels 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guimaraes CT, Sills GR, Sobral BW (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci U S A 94:14261–14266

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Hackett CA, Luo ZW (2003) TetraploidMap: construction of a linkage map in autotetraploid species. J Hered 94 (4):358–359

  20. Harrell Jr FE (2013) Hmisc: Harrell miscellaneous. R package version 3.12-2. Computer software]. Available from http://cran.R-project.Org/web/packages/Hmisc

  21. Heffelfinger C, Fragoso CA, Moreno MA, Overton JD, Mottinger JP, Zhao H, Tohme J, Dellaporta SL (2014) Flexible and scalable genotyping-by-sequencing strategies for population studies. BMC Genomics 15:979

    Article  PubMed  PubMed Central  Google Scholar 

  22. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  23. Islam MS, Thyssen GN, Jenkins JN, Fang DD (2015) Detection, validation, and application of genotyping-by-sequencing based single nucleotide polymorphisms in upland cotton. The plant genome 8(1). https://doi.org/10.3835/plantgenome2014.07.0034

  24. Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC, Deng DD, Hinchliffe DJ, Jones DC, Fang DD (2016) A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC genomics 17:903.Hackett CA, Luo ZW (2003) tetraploid map: construction of a linkage map in autotetraploid species. J Hered 94:358–359

    Google Scholar 

  25. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  26. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li X, Wei Y, Acharya A, Jiang Q, Kang J, Brummer EC (2014) A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome. G3 (Bethesda) 4:1971–1979

    CAS  Article  Google Scholar 

  28. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. McCord PH, Migneault AJ (2015) Genotyping sugarcane for the brown rust resistance locus Bru1 using unlabeled probe melting. Sugar Tech:1–6

  30. McCouch SR (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  31. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH et al (1998) Detailed alignment of Saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61

    Article  Google Scholar 

  34. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L et al (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:883

    Article  Google Scholar 

  35. Palhares AC, Rodrigues-Morais TB, Van Sluys M, Domingues DS, Maccheroni W, Jordão H, Souza AP, Marconi TG, Mollinari M, Gazaffi R (2012) A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genet 13:1

    Article  Google Scholar 

  36. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  Article  PubMed  Google Scholar 

  37. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2009) Nlme: linear and nonlinear mixed effects models. R package version 3:96

  38. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Raboin L, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau J, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391

    CAS  Article  PubMed  Google Scholar 

  40. Rott PC, Girard J (2013) Impact of pathogen genetics on breeding for resistance to sugarcane diseases. Proc Int Soc Sugar Cane Technol 28:1–11

    Google Scholar 

  41. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  Article  PubMed  Google Scholar 

  42. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    CAS  Article  Google Scholar 

  43. Serang O, Mollinari M, Garcia AAF (2012) Efficient exact maximum a posteriori computation for Bayesian SNP genotyping in polyploids. PLoS One 7:e30906

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Shrivastava AK, Srivastava S (2016) Diversity of the germplasm of Saccharum species and related genera available for use in directed breeding programmes for sugarcane improvement. Curr Sci 111:475–482

    Article  Google Scholar 

  45. Song J, Yang X, Resende MF Jr, Neves LG, Todd J, Zhang J, Comstock J, Wang J (2016) Natural allelic variations in highly polyploid Saccharum complex. Front Plant Sci 7:804

    PubMed  PubMed Central  Google Scholar 

  46. Sood SG, Comstock JC, Glynn NC (2009) Leaf whorl inoculation method for screening sugarcane rust resistance. Plant Dis 93:1335–1340

    Article  Google Scholar 

  47. Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  48. Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276

    CAS  Article  PubMed  Google Scholar 

  49. Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers J et al (2010) Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11:261

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang S, Basten CJ, Zeng ZB (2012) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  51. Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    CAS  Article  PubMed  Google Scholar 

  52. Yang X, Song J, You Q, Paudel D, Zhang J, Wang J (2017) Mining sequence variations in representative polyploid sugarcane germplasm accessions. BMC Genomics 18:594

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Erik A. Hanson of the Agronomy Department, University of Florida, for editing this manuscript. We gratefully thank Kay McCorkle at Sugarcane Field Station, USDA, ARS, for technical support in the greenhouse and field. This research is financially supported by the Florida Sugar Cane League.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianping Wang.

Ethics declarations

Data availability

The GBS sequences are available from the NCBI sequence read archive (SRA) database with an accession number of SRP102185.

Electronic supplementary material

Figure S1

(DOC 714 kb)

Figure S2

(DOC 653 kb)

ESM 1

(XLSX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Sood, S., Glynn, N. et al. Constructing high-density genetic maps for polyploid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance. Mol Breeding 37, 116 (2017). https://doi.org/10.1007/s11032-017-0716-7

Download citation

Keywords

  • Brown rust
  • Genotyping by sequencing
  • Genetic map
  • Polyploidy
  • Quantitative trait locus
  • Saccharum spp.