Skip to main content
Log in

Identification of plant architecture and yield-related QTL in Vicia faba L.

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Low and unstable yields across seasons and environments are among the main reasons which make profitability for farmers too low. Along with resistance/tolerance to biotic and abiotic stresses, plant architecture and yield-related traits are the main determinants of yield stability. The current study was conducted to identify and validate quantitative trait loci (QTL) for plant architecture and yield-related traits in faba bean; our results provide novel information about the genetics of plant architecture traits in this crop. An equina × paucijuga recombinant inbred line population was derived and submitted to field experiments at Córdoba (Spain) over a period of four seasons. Stable QTL were identified for eight of the traits evaluated. QTL clusters were identified on almost each chromosome. The high inter-trait correlations between some of the traits controlled by a cluster of QTL might reflect either a set of closely linked loci or, more likely, pleiotropic effects. The stability of many of these major QTL in different years offers the possibility of exploiting them via marker-assisted selection. Further fine mapping of these target regions will help to identify potential candidate genes using synteny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

FPI:

Flower per inflorescence

HLF:

Height of the lowest node bearing flowers

HLP:

Height of the lowest node bearing pods

HSW:

Hundred seed weight

MLM:

Maximum likelihood mixture

MQM:

Multiple QTL model

NF:

Nodes with flowers

NOP:

Number of ovules per pod

NSP:

Number of seeds per mature pods

NTP:

Number of total branches

PH:

Plant height

PL:

Pod length

PPP:

Pods per plant

QTL:

Quantitative trait loci

RIL:

Recombinant inbred line

rMQM:

Restricted multiple QTL model

References

  • Aastveit AH, Aastveit K (1993) Effects of genotype-environment interactions on genetic correlations. Theor Appl Genet 86:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Angus JF, Kirkegaard JA, Hunt JR, Ryan MH, Ohlander L, Peoples MB (2015) Break crops and rotations for wheat. Crop Pasture Sci 66:523–552

    Article  Google Scholar 

  • Atienza SG, Palomino C, Gutierrez N, Alfaro CM, Rubiales D, Torres AM, Avila CM (2016) QTLs for ascochyta blight resistance in faba bean (Vicia faba L.): validation in field and controlled conditions. Crop Pasture Sci 67:216–224. doi:10.1071/cp15227

    CAS  Google Scholar 

  • Avila CM, Atienza SG, Moreno MT, Torres AM (2007) Development of a new diagnostic marker for growth habit selection in faba bean (Vicia faba L.) breeding. Theor Appl Genet 115:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Avila CM, Satovic Z, Sillero JC, Nadal S, Rubiales D, Moreno MT, Torres AM (2005) QTL detection for agronomic traits in faba bean (Vicia faba L.) Agric Consp Sci 70:65–73

    Google Scholar 

  • Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L). Theor Appl Genet 108:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Ballvora A, Flath K, Lübeck J, Strahwald J, Tacke E, Hofferbert H-R, Gebhardt C (2011) Multiple alleles for resistance and susceptibility modulate the defense response in the interaction of tetraploid potato (Solanum tuberosum) with Synchytrium endobioticum pathotypes 1, 2, 6 and 18. Theor Appl Genet 123:1281–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudiar R, Casas AM, Cantalapiedra CP, Gracia MP, Igartua E (2016) Identification of quantitative trait loci for agronomic traits contributed by a barley (Hordeum vulgare) Mediterranean landrace. Crop Pasture Sci 67:37–46

    Article  CAS  Google Scholar 

  • Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177:589–607

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 6:21625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cernay C, Ben-Ari T, Pelzer E, Meynard J-M, Makowski D (2015) Estimating variability in grain legume yields across Europe and the Americas. Sci Rep 5:11171

    Article  PubMed  PubMed Central  Google Scholar 

  • Conneally PM, Edwards JH, Kidd KK, Lalouel J-M, Morton NE, Ott J, White R (1985) Report of the committee on methods of linkage analysis and reporting. Cytogenet Cell Genet 40:356–359

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Izquierdo S, Avila CM, Satovic Z, Palomino C, Gutierrez N, Ellwood SR, Phan HTT, Cubero JI, Torres AM (2012) Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theor Appl Genet 125:1767–1782. doi:10.1007/s00122-012-1952-1

    Article  CAS  PubMed  Google Scholar 

  • Cubero JI (1974) On the evolution of Vicia faba L. Theor Appl Genet 45:47–51

    Article  CAS  PubMed  Google Scholar 

  • Cubero JI (1982) Interspecific hybridiztion in Vicia. In: Hawtin G, Webb C (eds) Faba bean improvement. Martines Nijhoff Publishers, The Hague, pp 91–108

    Chapter  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Ruiz R, Satovic Z, Ávila CM, Alfaro CM, Gutierrez MV, Torres AM, Román B (2009) Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean (Vicia faba L.) Crop Pasture Sci 60:353–361

    Article  Google Scholar 

  • Diaz-Ruiz R, Torres AM, Satovic Z, Gutierrez MV, Cubero JI, Roman B (2010) Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor Appl Genet 120:909–919

    Article  PubMed  Google Scholar 

  • Duc G, Agrama H, Bao S, Berger J, Bourion V, De Ron AM, Gowda CLL, Mikic A, Millot D, Singh KB, Tullu A, Vandenberg A, Vaz Patto MC, Warkentin TD, Zong X (2015) Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Critical Rev Plant Sci 34:381–411

    Article  Google Scholar 

  • Ellwood SR, Phan HTT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genom 9. doi:10.1186/1471-2164-9-380

  • FAOSTAT (2014) Food and Agriculture Organization or the United Nations, Statistics division. http://faostat3.fao.org/download/Q/QC/E.

  • Fleury D, Barker B (2015) Faba bean variety report 2015/16. Saskatchewan Pulse Growers, Saskatchewan (Canada)

    Google Scholar 

  • Gutierrez N, Avila CM, Duc G, Marget P, Suso MJ, Moreno MT, Torres AM (2006) CAPs markers to assist selection for low vicine and convicine contents in faba bean (Vicia faba L.) Theor Appl Genet 114:59–66

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez N, Palomino C, Satovic Z, Ruiz-Rodríguez MD, Vitale S, Gutiérrez MV, Rubiales D, Kharrat M, Amri M, Emeran AA, Cubero JI, Atienza SG, Torres AM, Avila CM (2013) QTLs for Orobanche spp. resistance in faba bean: identification and validation across different environments. Mol Breeding 32:909–922

    Article  Google Scholar 

  • Hartman Y, Hooftman DAP, Eric Schranz M, van Tienderen PH (2013) QTL analysis reveals the genetic architecture of domestication traits in Crisphead lettuce. Genet Res Crop Evol 60:1487–1500

    Article  Google Scholar 

  • Jansen RC (1993) Interval mapping of multipli quantitative trait loci. Genetics 135:205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RC (1994) Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138:871–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Kimber RBE, Cogan NOI, Materne M, Forster JW, Paull JG (2014) SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci 217–218:47–55

    Article  PubMed  Google Scholar 

  • Kaur S, Pembleton LW, Cogan NOI, Savin KW, Leonforte T, Paull J, Materne M, Forster JW (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genom 13:104

    Article  CAS  Google Scholar 

  • Khan HR, Paull JG, Siddique KHM, Stoddard FL (2010) Faba bean breeding for drought-affected environments: a physiological and agronomic perspective. Field Crop Res 115:279–286

    Article  Google Scholar 

  • Khazaei H, O’Sullivan D, Sillanpää M, Stoddard F (2014a) Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.) Theor Appl Genet 127:2371–2385

    Article  PubMed  Google Scholar 

  • Khazaei H, O’Sullivan DM, Jones H, Pitts N, Sillanpää MJ, Pärssinen P, Manninen O, Stoddard FL (2015) Flanking SNP markers for vicine–convicine concentration in faba bean (Vicia faba L.) Mol Breed 35:1–6

    Article  CAS  Google Scholar 

  • Khazaei H, O’Sullivan DM, Sillanpää MJ, Stoddard FL (2014b) Genetic analysis reveals a novel locus in Vicia faba decoupling pigmentation in the flower from that in the extra-floral nectaries. Mol Breed 34:1507–1513

    Article  CAS  Google Scholar 

  • Köpke U, Nemecek T (2010) Ecological services of faba bean. Field Crop Res 115:217–233

    Article  Google Scholar 

  • Lagunes Espinoza LC, Huguet T, Julier B (2012) Multi-population QTL detection for aerial morphogenetic traits in the model legume Medicago truncatula. Theor Appl Genet 124:739–754

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Link W, Balko C, Stoddard FL (2010) Winter hardiness in faba bean: physiology and breeding. Field Crop Res 115:287–296

    Article  Google Scholar 

  • Maalouf F, Nachit M, Ghanem ME, Singh M (2015) Evaluation of faba bean breeding lines for spectral indices, yield traits and yield stability under diverse environments. Crop Pasture Sci 66:1012–1023

    Article  Google Scholar 

  • Madrid E, Palomino C, Plötner A, Horres R, Rotter B, Winter P, Krezdorn N, Torres AM (2013) Deep SuperSage analysis of the Vicia faba transcriptome in response to Ascochyta fabae infection. Phytopathol Mediterr 52:166–182

    CAS  Google Scholar 

  • Magrini MB, Anton M, Cholez C, Corre-Hellou G, Duc G, Jeuffroy MH, Meynard JM, Pelzer E, Voisin AS, Walrand S (2016) Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecol Econ 126:152–162

    Article  Google Scholar 

  • Muratova VS (1931) Common beans (Vicia faba L.) Bull Appl Bot Genet Pl Breed Suppl 50:1–298

    Google Scholar 

  • O’Sullivan DM, Angra D (2016) Advances in faba bean genetics and genomics. Front Genet 7:150

    PubMed  PubMed Central  Google Scholar 

  • Ocaña S, Seoane P, Bautista R, Palomino C, Claros GM, Torres AM, Madrid E (2015) Large-scale transcriptome analysis in faba bean (Vicia faba L.) under ascochyta fabae infection. PLoS ONE 10:e0135143

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick JW, Stoddard FL (2010) Physiology of flowering and grain filling in faba bean. Field Crop Res 115:234–242

    Article  Google Scholar 

  • Pearce A, Ware A, Kimber R, Paull J (2015) Faba bean variety sowing guide 2015. S Aust Sowing Guide 2015:56–58

    Google Scholar 

  • Pérez-de-Luque A, Eizenberg H, Grenz JH, Sillero JC, Ávila C, Sauerborn J, Rubiales D (2010) Broomrape management in faba bean. Field Crop Res 115:319–328

    Article  Google Scholar 

  • Portis E, Barchi L, Toppino L, Lanteri S, Acciarri N, Felicioni N, Fusari F, Barbierato V, Cericola F, Valè G, Rotino GL (2014) QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS One 9:e89499

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsey G, Van de Ven W, Waugh R, Griffiths DW, Powell W (1995) Mapping quantitative trait loci in faba beans. Eur Conf Grain Legum 444–445

  • Reckling M, Bergkvist G, Watson CA, Stoddard FL, Zander PM, Walker RL, Pristeri A, Toncea I, Bachinger J (2016) Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Frontiers Plant Sci 7:669

    Article  Google Scholar 

  • Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239

    Article  Google Scholar 

  • Rubiales D (2014) Legume breeding for broomrape resistance. Czech J Genet Plant Breed 50:144–150

    Google Scholar 

  • Sallam A, Dhanapal AP, Liu S (2016) Association mapping of winter hardiness and yield traits in faba bean (Vicia faba L.) Crop Pasture Sci 67:55–68

    Article  Google Scholar 

  • Satovic Z, Avila C, Cruz-Izquierdo S, Diaz-Ruiz R, Garcia-Ruiz G, Palomino C, Gutierrez N, Vitale S, Ocana-Moral S, Gutierrez M, Cubero J, Torres A (2013) A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.) BMC Genomics 14:932

    Article  PubMed  PubMed Central  Google Scholar 

  • Sillero JC, Villegas-Fernández AM, Thomas J, Rojas-Molina MM, Emeran AA, Fernández-Aparicio M, Rubiales D (2010) Faba bean breeding for disease resistance. Field Crop Res 115:297–307

    Article  Google Scholar 

  • Stoddard FL, Nicholas AH, Rubiales D, Thomas J, Villegas-Fernández AM (2010) Integrated pest management in faba bean. Field Crop Res 115:308–318

    Article  Google Scholar 

  • Torres AM, Avila CM, Stoddard FL, Cubero JI (2012) Faba bean. In: Pérez de la Vega M, Torres AM, Cubero JI, Kole C (eds) Genomics and breeding of cool season grain legumes. Science Publishers Jersey British Channel Island., pp 51–97

  • van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2009) MapQTL(R) 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V, Wageningen

    Google Scholar 

  • Verma P, Goyal R, Chahota RK, Sharma TR, Abdin MZ, Bhatia S (2015) Construction of a genetic linkage map and identification of QTLs for seed weight and seed size traits in lentil (Lens culinaris Medik.) PLoS One 10:e0139666

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Ulloa M, Mullens TR, Yu JZ, Roberts PA (2012) QTL analysis for transgressive resistance to root-knot nematode in interspecific cotton (Gossypium spp.) progeny derived from susceptible parents. PLoS One 7:e34874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Webb A, Cottage A, Wood T, Khamassi K, Hobbs D, Gostkiewicz K, White M, Khazaei H, Ali M, Street D, Duc G, Stoddard FL, Maalouf F, Ogbonnaya FC, Link W, Thomas J, O’Sullivan DM (2016) A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.) Plant Biotech J 14:177–185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Spanish Ministerio de Innovación y Ciencia (MICINN) grant AGL2008-02305 and the Instituto Nacional de Investigación Agraria (INIA) grant RTA2013-00025, both cofinanced with FEDER. M.D. Ruiz-Rodríguez was recipient of a predoctoral fellowship associated to AGL2008-02305. We are grateful to Juan Prieto Ballesteros for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Ávila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila, C.M., Ruiz-Rodríguez, M.D., Cruz-Izquierdo, S. et al. Identification of plant architecture and yield-related QTL in Vicia faba L.. Mol Breeding 37, 88 (2017). https://doi.org/10.1007/s11032-017-0688-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0688-7

Keywords