Skip to main content
Log in

Mapping QTLs and meta-QTLs for two inflorescence architecture traits in multiple maize populations under different watering environments

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Drought significantly affects the architectural development of maize inflorescence, which leads to massive losses in grain yield. However, the genetic mechanism for traits involved in inflorescence architecture in different watering environments, remains poorly understood in maize. In this study, 19 QTLs for tassel primary branch number (TBN) and ear number per plant (EN) were detected in 2 F2:3 populations under both well-watered and water-stressed environments by single environment mapping with composite interval mapping (CIM); 11/19 QTLs were detected under water-stressed environments. Moreover, 21 QTLs were identified in the 2 F2:3 populations by joint analysis of all environments with a mixed linear model based on composite interval mapping (MCIM), 11 QTLs were involved in QTL × environment interactions, seven epistatic interactions were identified with additive by additive/dominance effects. Remarkably, 12 stable QTLs (sQTLs) were simultaneously detected by single environment mapping with CIM and joint analysis through MCIM, which were concentrated in ten bins across the chromosomes: 1.05_1.07, 1.08_1.10, 2.01_2.04, 3.01, 4.06, 4.09, 5.06_5.07, 6.05, 7.00, and 7.04 regions. Twenty meta-QTLs (mQTLs) were detected across 19 populations under 51 watering environments using a meta-analysis, and 34 candidate genes were predicted in corresponding mQTLs regions to be involved in the regulation of inflorescence development and drought resistance. Therefore, these results provide valuable information for finding quantitative trait genes and to reveal the genetic mechanisms responsible for TBN and EN under different watering environments. Furthermore, alleles for TBN and EN provide useful targets for marker-assisted selection to generate high-yielding maize varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrama HAS, Moussa ME (1996) Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.) Euphytica 91:89–97

    Article  CAS  Google Scholar 

  • Almeida GD, Nair S, Borém A, Cairns J, Trachsel S, Ribaut JM, Bänziger M, Prasanna BM, Crossa J, Babu R (2014) Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol Breed 34:701–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett ME, Thompson B (2014) Meristem identify and phyllotaxis in inflorescence development. Front Plant Sci 14(5):508

    Google Scholar 

  • Beatty MK, Rahman A, Cao H, Woodman W, Lee M, Myers AM, James MG (1999) Purification and molecular genetic characterization of ZPU1, a pullulanase-type starch-debranching enzyme from maize. Plant Physiol 119(1):255–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273(5280):1406–1409

    Article  CAS  PubMed  Google Scholar 

  • Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, Mcmullen MD, Buckler ES, Rocheford TR (2011) Distinct genetic architectures for male and female inforescence traits of maize. PLoS Genet 7(11):e1002383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12(2):367–377

    Article  CAS  PubMed  Google Scholar 

  • Chen LJ, Wuriyanghan H, Zhang YQ, Duan KX, Chen HW, Li QT, Lu X, He SJ, Ma B, Zhang WK, Lin Q, Chen SY, Zhang JS (2013) An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol 163(4):1752–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZL, Wang BB, Dong XM, Liu H, Ren LG, Chen J, Hauck A, Song WB, Lai JS (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics 15:433

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, Gupta P, Ananiev EV, Muszynski MG (2008) Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol 147(4):2054–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • Depège-Fargeix N, Javelle M, Chambrier P, Frangne N, Gerentes D, Perez P, Rogowsky PM, Vernoud V (2011) Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize. J Exp Bot 62(1):293–305

    Article  PubMed  Google Scholar 

  • Ding X, Yang SQ, Xu Q, Du CF, Wu SJ, Luo XL, Ma YB, Zhang AH, Sun X, Li PB (2015) Progress on transcription factor WRI1 in crops. Mol Plant Breed 13(3):697–701

    CAS  Google Scholar 

  • Dong YB, Zhang ZW, Shi QL, Wang QL, Zhou Q, Deng F, Ma ZY, Qiao DH, Li YL (2015) QTL consistency for agronomic traits across three generations and potential applications in popcorn. J Integr Agric 14(12):2547–2557

    Article  Google Scholar 

  • Du Y, He W, Deng C, Chen X, Gou L, Zhu F, Guo W, Zhang J, Wang T (2016) Flowering-related RING protein 1 (FRRP1) regulates flowering time and yield protential by affecting histone H2B monoubiquitination in rice (Oryza sativa). PLoS One 11(3):e0150458

    Article  PubMed  PubMed Central  Google Scholar 

  • Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-Central United States. Crop Sci 39:1622–1630

    Article  Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in commercial hybrid maize breeding program. Plant Breed Rev 24:109–151

    Google Scholar 

  • EI-Soda M, Boer MP, Bagheri H, Hanhart CJ, Koornneef M, Aarts MG (2014) Genotype-environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes. J Exp Bot 65(2):697–708

    Article  Google Scholar 

  • Evans MM (2007) The indeterminate gametophyte 1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19(1):46–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan JJ, Wang NZ, Zhu YS, Cui ZH, Yuan YH, Zhang LJ (2012) Research progress on prolificacy in maize. J Maize Sci 20(5):143–146

    Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66(21):6803–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa K, Ichikawa S, Nigorikawa M, Sonoki T, Ito Y (2014) Enhanced production of reducing sugars from transgenic rice expressing exoglucanase under the control of a senescence-inducible promoter. Transgenic Res 23(3):531–537

    Article  CAS  PubMed  Google Scholar 

  • Gao SB, Zhao MJ, Lan H, Zhang ZM (2007) Identification of QTL associated with tassel branch number and total tassel length in maize. Yi Chuan 29(8):1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Gowda M, Kling C, Würschum T, Reif JC (2010) Hybrid breeding in durum wheat: heterosis and combining ability. Crop Sci 50:2224–2230

    Article  Google Scholar 

  • Heyl A, Muth J, Santandrea G, O’Connell T, Serna A, Thompson RD (2001) A transcript encoding a nucleic acid-binding protein specifically expressed in maize seeds. Mol Gen Genomics 266(2):180–189

    Article  CAS  Google Scholar 

  • Hu YM, Wu X, Li CX, Fu ZY, Liu ZH, Tang JH (2008) Genetic analysis on the related traits of florescence for hybrid seed production in maize. J Nanjing Agric Univ 31(1):11–16

    Google Scholar 

  • Hu LF, Liang WQ, Yin CS, Cui X, Zong J, Wang X, Hu JP, Zhang DB (2011) Rice MADS3 regulates ros homeostasis during late anther development. Plant Cell 23:515–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu HL, Liu QH, Xia YL, Li TF, Zhang K (2012) Discussions on ear malformation of maize and its control method. J Jilin Agric Sci 37(1):21–22

    Google Scholar 

  • Huang C, Hu G, Li Y, Wu J, Zhou X (2013) NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana Benthamiana. Physiol Plant 149(3):297–309

    CAS  PubMed  Google Scholar 

  • Huo D, Ning Q, Shen X, Liu L, Zhang Z (2016) QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize. PLoS One 11(5):e0155506

    Article  PubMed  PubMed Central  Google Scholar 

  • Janousek B, Matsunaga S, Kejnovsky E, Ziuvova J, Vyskot B (2002) DNA methylation analysis of a male reproductive organ specific gene (MPOS1) during pollen development. Genome 45(5):930–938

    Article  CAS  PubMed  Google Scholar 

  • Ji XM, Raveendran M, Oane R, Ismail A, Lafitte R, Bruskiewich R, Cheng SH, Bennett J (2005) Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Mol Biol 59(6):945–964

    Article  CAS  PubMed  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K (1998) Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci USA 95(5):979–1982

    Article  Google Scholar 

  • Lai J, Dey N, Kim CS, Bharti AK, Rudd S, Mayer KF, Larkins BA, Becraft P, Messing J (2004) Characterization of the maize endosperm transcriptome and its comparison to the rice genome. Genome Res 14(10A):1932–1937

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert RJ, Ohnson RR (1978) Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Sci 18:499–502

    Article  Google Scholar 

  • Lan JH (2010) QTL analysis on the flowering related traits in maize. Acta Botan Boreali-Occiden Sin 30(3):0471–0480

    Google Scholar 

  • La-Rocca N, Manzotti PS, Cavaiuolo M, Barbante A, Dalla-Vecchia F, Gabotti D, Gendrot G, Horner DS, Krstajic J, Persico M, Rascio N, Rogowsky P, Scarafoni A, Consonni G (2015) The maize fused leaves 1 (fdl1) gene controls organ separation in the embryo and seedling shoot and promotes coleoptile opening. J Exp Bot 66(19):5753–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XH, Li XH, Hao ZF, Tian QZ, Zhang SH (2005) Consensus map of the QTL relevant to drought tolerance of maize under drought conditions. Sci Agric Sin 38(5):882–890

    CAS  Google Scholar 

  • Li NN, Yang JZ, Hao JP (2011) Influence of nutrients and density stress on ear high dimensional size of growing ear and its relation to kernel yield in corn. J Nuclear Agri Sci 25(3):0563–0569

    Google Scholar 

  • Lu M, Zhou F, Xie CX, Li MS, Li XH, Yang XJ, Liu MZ, Zhang SH (2007) Analysis of epistatic and QTL x E interaction of ear length in maize. Crops 4:30–32

    Google Scholar 

  • Ma Z, Dooner HK (2004) A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. Plant J 37(1):92–103

    Article  CAS  PubMed  Google Scholar 

  • Ma XQ, Tang JH, Teng WT, Yan JB, Meng YJ, Li JS (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed 20(1):41–51

    Article  Google Scholar 

  • Mao GH, Song LX, Sun DY (2004) Progress of study on calmodulin-binding proteins in plants. J Plant Physiol Mol Biol 30(5):481–488

    CAS  Google Scholar 

  • McCouch SR, Cho GY, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newsletter 14:11–13

  • McGonigle B, Keeler SJ, Lau SM, Koeppe MK, O’Keefe DP (2000) A genomics approach to the comprehensive analysis of the glutathione s-transferase gene family in soybean and maize. Plant Physiol 124(3):1105–1120

  • Mena M, Mandel MA, Lerner DR, Yanofsky MF, Schmidt RJ (1995) A characterization of the MADS-box gene family in maize. Plant J 8(6):845–854

    Article  CAS  PubMed  Google Scholar 

  • Michael L (1999) Estimating genetic correlations in natural populations. Genet Res Camb 74:255–264

    Article  Google Scholar 

  • Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002) Quantitative trait loci controlling leaf and tassel traits in a B73 x Mo17 population of maize. Crop Sci 42:1902–1909

    Article  CAS  Google Scholar 

  • Nikolic A, Andjelkovic V, Dodig D, Ignjatovia-Micic D (2011) Quantitative trait loci for yield and morphological traits in maize under drought stress. Genetika 43(2):263–276

    Article  Google Scholar 

  • Peng YL, Zhao XQ, Ren XW, Li JY (2013) Effect of drought stress on growth of different plant type maize (Zea mays) in the bell-mouthed period. J Desert Res 33(4):1064–1070

    Google Scholar 

  • Peng Y, Gao Z, Zhang B, Liu C, Xu J, Ruan B, Hu J, Dong G, Guo L, Liang G, Qian Q (2014a) Fine mapping and candidate gene analysis of a major QTL for panicle structure in rice. Plant Cell Rep 33(11):1843–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng YL, Zhao XQ, Ren XW, Li JY (2014b) Genotypic difference in response of physiological characteristics and grain yield of maize inbred lines to drought stress at flowering stage. Agric Res Arid Areas 32(3):9–14

    Google Scholar 

  • Phillips PC (2008) Epistasis-the essential role of gene interactions in the structure and evolution of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9(11):855–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Ritchie SW, Hanway JJ, Benson GO (1997) How a corn plant develops. Spec. Rep. 48. Iowa State Univ. Coop. Ext. Serv., Ames, IA

  • Ross AJ, Hallauer AR, Lee M (2006) Genetic analysis of traits correlated with maize ear length. Maydica 51:301–313

    Google Scholar 

  • Roychowdhury M, Li X, Qi H, Li W, Sun J, Huang C, Wu D (2016) Functional characterization of 9–13-LOXs in rice and silencing their expression to improve grain qualities. Biomed Res Int 4275904

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms I barley: Mendelian inheritance, chromosomal locations, and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoper JB, Lambert RJ, Vasilas BL, Westqate ME (1987) Plant factors controlling seed set in maize: the influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiol 83(1):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song FB, Dai JY (2005) Response and adaptability of maize to drought stressII. Response of ear and tassel growth and development of maize to drought stress. J Jilin AgriUniv 27(1):1–5

    Google Scholar 

  • Song A, Zhu X, Chen F, Gao H, Jiang J, Chen S (2014) A chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci 15(3):5063–5078

    Article  PubMed  PubMed Central  Google Scholar 

  • Sosnowski O, Joets J (2012) BioMercator v4 user guide. UMR de Génétique Végétale du MoulonF- 91190 Gif-sur-Yvette (http://www.bioinformatics.org/mqtl/wiki)

  • Stuber CW, Edwards MD, Wendel J (1987) F1 molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Sun Z, Mo QC, Cheng BJ, Xie CX, Lin F (2012) Analysis of inheritance, heterosis and parent-off spring correlation of tassel branch number in maize (Zea mays L.) Crops 2:31–35

    Google Scholar 

  • Tanaka W, Pautler M, Jackson D, Hirano HY (2013) Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol 54:313–324

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Yan JB, Huang YQ, Zheng YL, Li JS (2005) QTL mapping of five agronomic traits in maize. Acta Genet Sin 32(2):203–209

    PubMed  Google Scholar 

  • Trachsel S, Messmer R, Stamp P, Hund A (2009) Mapping of QTLs for leteral and axile root growth of tropical maize. Theor Appl Genet 119:1413–1424

    Article  CAS  PubMed  Google Scholar 

  • Upadyayula N, da Silva HS, Bohn MO, Rocheford TR (2006) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet 112:592–606

    Article  CAS  PubMed  Google Scholar 

  • Van-Ooijen JW (2006) JoinMap® 4: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV (http://www.kyazma.nl/index.php/mc.JoinMap/sc.Evaluate/)

  • Veldboom LR, Lee M (1994) Molecular-marker-facilitated studies of morphological traits in maize. II: determination of QTLs for grain yield and yield components. Theor Appl Genet 89:451–458

    Article  CAS  PubMed  Google Scholar 

  • Wang Q (2009) A molecular genetics study of the related to acetyltransferase 1 and 2 (RAT1 and RAT2) genes. Hunan University

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Wang JL, Shi Shi SQ, Jia LQ, Jiang ZP (2010) Progress on functions of ubiquitin conjugating enzyme (E2) in plants. Biotechnol Bull 4:7–10

    CAS  Google Scholar 

  • Wang D, Li YX, Wang Y, Liu C, Liu ZZ, Peng B, Tan WW, Zhang Y, Sun BC, Shi YS, Song YC, Wang TY, Li Y (2011) Major quantitative trait loci analysis of tassel primary branch number and tassel weight in maize (Zea mays). Chin Bull Bot 46(1):11–20

    Article  CAS  Google Scholar 

  • Wu X, Li Y, Shi Y, Song Y, Zhang D, Li C, Buckler ES, Li Y, Zhang Z, Wang T (2016) Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J 14(7):1551–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Yuan Y, Xu Y, Zhang G, Guo X, Wu F, Wang Q, Rong T, Pan G, Cao M, Tang Q, Gao S, Liu Y, Wang J, Lan H, Lu Y (2014) Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol 14:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Tang DG, Zhang L, Liu J, Rong TZ (2015) Identification of QTL for ear row number and two ranked versus many-ranked ear in maize across four environments. Euphytica 206:33–47

    Article  Google Scholar 

  • Yang C, Zhang L, Jia A, Rong T (2016) Identification of QTL for maize grain yield and kernel-related traits. J Genet 95(2):239–247

    Article  PubMed  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12(12):2473–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Dou Y, Kianian SF, Zhang C, Holding DR (2014) Deletion mutagenesis identifies a haploinsufficient role for γ-zein in opaque2 endosperm modification. Plant Physiol 164(1):119–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Jiang F, Liu PF, Zhang ZL, Chen QC, Wang XM (2013) QTL mapping for tassel primary branch number in sweet corn. Hubei Agri Sci 52(15):3492–3495

    Google Scholar 

  • Zhang ZL, Jiang F, Liu PF, Chen QC, Zhang Y, Wang XM (2014) QTL mapping for tassel primary branch number in sweet corn. J South China Agri Univ 35(1):110–113

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation of China (31260330 and 31301333), and the International Scientific and Technological Cooperation Project of Gansu, China (1504WKCA009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunling Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Peng, Y., Zhang, J. et al. Mapping QTLs and meta-QTLs for two inflorescence architecture traits in multiple maize populations under different watering environments. Mol Breeding 37, 91 (2017). https://doi.org/10.1007/s11032-017-0686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0686-9

Keywords

Navigation