Skip to main content
Log in

Identification of SNPs tightly linked to the QTL for pod shattering in soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The pod shattering or dehiscence is essential for the propagation of pod-bearing plant species in the wild, but it causes significant yield losses during harvest of domesticated crop plants. Identifying novel molecular makers, which are linked to seed-shattering genes, is needed to employ the molecular marker-assisted selection for efficiently developing shattering-resistant soybean varieties. In this study, a genetic linkage map was constructed using 115 recombinant inbred lines (RILs) developed from crosses between the pod shattering susceptible variety, Keunol, and resistant variety, Sinpaldal. A 180 K Axiom® SoyaSNPs data and pod shattering data from two environments in 2001 and 2015 were used to identify quantitative trait loci (QTL) for pod shattering. A major QTL was identified between two flanking single nucleotide polymorphism (SNP) markers, AX-90320801 and AX-90306327 on chromosome 16 with 1.3 cM interval, 857 kb of physical range. In sequence, genotype distribution analysis was conducted using extreme phenotype RILs. This could narrow down the QTL down to 153 kb on the physical map and was designated as qPDH1-KS with 6 annotated gene models. All exons within qPDH1-KS were sequenced and the 6 polymorphic SNPs affecting the amino acid sequence were identified. To develop universally available molecular markers, 38 Korean soybean cultivars were investigated by the association study using the 6 identified SNPs. Only two SNPs were strongly associated with the pod shattering. These two identified SNPs will help to identify the pod shattering responsible gene and to develop pod shattering-resistant soybean plants using marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

QTL:

Quantitative trait loci

SNP:

Single nucleotide polymorphism

RILs:

Recombinant inbred lines

References

  • Bailey MA, Mian MAR, Carter TE, Ashley DA, Boerma HR (1997) Pod dehiscence of soybean: identification of quantitative trait loci. J Hered 88(2):152–154

    Article  CAS  Google Scholar 

  • Dong Y, Yang X, Liu J, Wang B-H, Liu B-L, Wang Y-Z (2014) Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat Commun 5. doi:10.1038/ncomms4352

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world. Ann Bot 100(5):903–924. doi:10.1093/aob/mcm048

    Article  PubMed  PubMed Central  Google Scholar 

  • Funatsuki H, Ishimoto M, Tsuji H, Kawaguchi K, Hajika M, Fujino K (2006) Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breed 125(2):195–197

  • Funatsuki H, Hajika M, Hagihara S, Yamada T, Tanaka Y, Tsuji H, Ishimoto M, Fujino K (2008) Confirmation of the location and the effects of a major QTL controlling pod dehiscence, qPDH1, in soybean. Breed Sci 58(1):63–69. doi:10.1270/jsbbs.58.63

    Article  CAS  Google Scholar 

  • Funatsuki H, Hajika M, Yamada T, Suzuki M, Hagihara S, Tanaka Y, Fujita S, Ishimoto M, Fujino K (2012) Mapping and use of QTLs controlling pod dehiscence in soybean. Breed Sci 61(5):554–558. doi:10.1270/jsbbs.61.554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funatsuki H, Suzuki M, Hirose A, Inaba H, Yamada T, Hajika M, Komatsu K, Katayama T, Sayama T, Ishimoto M, Fujino K (2014) Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc Natl Acad Sci U S A 111(50):17797–17802. doi:10.1073/pnas.1417282111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Zhu H (2013) Fine mapping of a major quantitative trait locus that regulates pod shattering in soybean. Mol Breed 32(2):485–491

    Article  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38 (Database issue):D843–846. doi:10.1093/nar/gkp798

  • Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38. doi:10.1186/1471-2164-11-38

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116(7):945–952. doi:10.1007/s00122-008-0726-2

    Article  CAS  PubMed  Google Scholar 

  • Isemura T, Kaga A, Konishi S, Ando T, Tomooka N, Han OK, Vaughan DA (2007) Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann Bot 100(5):1053–1071. doi:10.1093/aob/mcm155

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang S-T, Kwak M, Kim H-K, Choung M-G, Han W-Y, Baek I-Y, Kim MY, Van K, Lee S-H (2008) Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L.) Merr.] Euphytica 166(1):15–24. doi:10.1007/s10681-008-9810-6

    Article  Google Scholar 

  • Kang ST, Kim HK, Baek IY, Chung MG, Han WY, Shin DC, Lee SH (2005) Genetic analysis of pod dehiscence in soybean. Korean J of Crop Sci 50(4):281–285

    Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. doi:10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36(4):1037–1045. doi:10.2135/cropsci1996.0011183X003600040037x

    Article  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059. doi:10.1038/ng.715

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Man-Soo C, Hyun-Tae K, Hong-Tai Y, Byungwook L, Young-Soo C, Ryan WK, Hong-Kyu C (2015a) Soybean [Glycine max (L.) Merrill]: importance as a crop and pedigree reconstruction of Korean varieties. Plant Breed and Biotechnol 3(3):179–196

    Article  Google Scholar 

  • Lee JS, Kim S-M, Kang S (2015b) Fine mapping of quantitative trait loci for sucrose and oligosaccharide contents in soybean [Glycine max (L.) Merr.] using 180 K Axiom® SoyaSNP genotyping platform. Euphytica 208(1):195–203. doi:10.1007/s10681-015-1622-x

    Article  Google Scholar 

  • Lee Y-G, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, Ha B-K, Kang S-T, Park B-S, Moon J-K, Kim N, Jeong S-C (2015c) Development, validation and genetic analysis of a large soybean SNP genotyping array. The Plant J 81(4):625–636. doi:10.1111/tpj.12755

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17(11):2993–3006. doi:10.1105/tpc.105.036004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed MS, Russom Z, Abdul SD (2010) Inheritance of hairiness and pod shattering, heritability and correlation studies in crosses between cultivated cowpea (Vigna unguiculata (L.) Walp.) and its wild (var. pubescens) relative. Euphytica 171(3):397–407

    Article  Google Scholar 

  • Ogawa M, Kay P, Wilson S, Swain SM (2009) Arabidopsis dehiscence zone polygalacturonase1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21(1):216–233. doi:10.1105/tpc.108.063768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajani S, Sundaresan V (2001) The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol 11(24):1914–1922

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nat 463(7278):178–183. doi:10.1038/nature08670

    Article  CAS  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8(1):e54985. doi:10.1371/journal.pone.0054985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Fujino K, Nakamoto Y, Ishimoto M, Funatsuki H (2009) Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Mol Breed 25(3):407–418. doi:10.1007/s11032-009-9340-5

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental population. Wageningen, Netherlands

  • Van Ooijen JW (2009) MapQTL® 6, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Netherlands

  • Weeden NF, Brauner S, Przyborowski JA (2002) Genetic analysis of pod dehiscence in pea (Pisum sativum L.) Cell Mol Biol Lett 7(2B):657–663

    CAS  PubMed  Google Scholar 

  • Zhou J, Lemos B, Dopman EB, Hartl DL (2011) Copy-number variation: the balance between gene dosage and expression in Drosophila melanogaster. Genome Biol Evol 3:1014–1024. doi:10.1093/gbe/evr023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present research was supported by the research fund of Dankook University in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungtaeg Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Table 1

(DOCX 18 kb)

Table S2

(DOCX 21 kb)

Table S3

(DOCX 18 kb)

Fig. S1

(DOCX 1090 kb)

Fig. S2

(DOCX 40 kb)

Fig. S3

(DOCX 63 kb)

Fig. S4

(DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.S., Kim, K.R., Ha, BK. et al. Identification of SNPs tightly linked to the QTL for pod shattering in soybean. Mol Breeding 37, 54 (2017). https://doi.org/10.1007/s11032-017-0656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0656-2

Keywords

Navigation