Molecular Breeding

, 37:33 | Cite as

Development of molecular markers for breeding of double flowers in Japanese gentian

  • Keisuke Tasaki
  • Atsumi Higuchi
  • Kohei Fujita
  • Aiko Watanabe
  • Nobuhiro Sasaki
  • Kazumichi Fujiwara
  • Hiroshi Abe
  • Zenbi Naito
  • Ryo Takahashi
  • Takashi Hikage
  • Masahiro Nishihara
Article
  • 318 Downloads

Abstract

Double flowers are valuable floral traits in most floricultural plants. We recently revealed that a double-flowered mutant of Gentiana scabra was caused by an insertion of a retrotransposable element (Tgs1) into GsAG1, one of the C-class MADS-box genes in gentian. In this study, we developed a PCR-based molecular DNA marker to distinguish double- and single-flower phenotypes at the young seedling stage in Japanese gentian plants. To test the validity of the markers, 17 F2 populations were produced by selfing F1 plants crossed between the double-flower mutant and seven breeding lines. Multiplex PCR demonstrated that the Tgs1 insertion in GsAG1 cosegregated with the double-flower phenotype in two F2 populations, indicating that the PCR-based DNA marker was useful to discriminate between double- and single-flower phenotypes in advance of flowering in Japanese gentian. Given that Japanese gentians lack variation in flower shape and require a long breeding period, the DNA marker developed here will be helpful for efficient breeding of double-flowered cultivars in the future.

Keywords

C-class MADS-box gene Double-flower GsAG1 Japanese gentian Molecular marker 

Abbreviations

AG

AGAMOUS

PCR

polymerase chain reaction

MAS

marker assisted selection

Supplementary material

11032_2017_633_MOESM1_ESM.pdf (305 kb)
ESM 1(PDF 304 kb)

References

  1. Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560. doi:10.1016/j.tplants.2003.09.010 CrossRefPubMedGoogle Scholar
  2. Bendahmane M, Dubois A, Raymond O, Bris ML (2013) Genetics and genomics of flower initiation and development in roses. J Exp Bot 64:847–857. doi:10.1093/jxb/ers387 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chen CM, Wei TY, Yeh DM (2012) Morphology and inheritance of double floweredness in Catharanthus roseus. Hortscience 47:1679–1681Google Scholar
  4. Cheon K-S, Nakatsuka A, Tasaki K, Kobayashi N (2017) Floral morphology and MADS gene expression in double-flowered Japanese evergreen azalea. Hort J. doi:10.2503/hortj.OKD-025 Google Scholar
  5. Doi H, Hoshi N, Yamada E, Yokoi S, Nishihara M, Hikage T, Takahata Y (2013) Efficient haploid and doubled haploid production from unfertilized ovule culture of gentians (Gentiana spp.) Breed Sci 63:400–406. doi:10.1270/jsbbs.63.400 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, Boltz V, Vergne P, Bendahmane M (2010) Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses. PLoS One 5:e9288. doi:10.1371/journal.pone.0009288 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ecker R, Barzilay A, Osherenko E (1993) Linkage relationships of genes for leaf morphology and double flowering in Matthiola incana. Euphytica 74:133–136. doi:10.1007/BF00033778 CrossRefGoogle Scholar
  8. Henry RJ (2012) Molecular Markers in Plants. Wiley-Blackwell. doi:10.1002/9781118473023
  9. Hikage T, Kogusuri K, Tanaka-Saito C, Watanabe S, Chiba S, Kume K, Doi H, Saitoh Y, Takahata Y, Tsutsumi K (2011) W14/15 esterase gene haplotype can be a genetic landmark of cultivars and species of the genus Gentiana L. Mol Gen Genomics 285:47–56. doi:10.1007/s00438-010-0582-z CrossRefGoogle Scholar
  10. Hughes S (1993) Carnations and pinks: the complete guide. The Crowood Press Ltd, Marlborough, UKGoogle Scholar
  11. Imamura T, Nakatsuka T, Higuchi A, Nishihara M, Takahashi H (2011) The gentian orthologs of the FT/TFL1 gene family control floral initiation in Gentiana. Plant Cell Physiol 52:1031–1041. doi:10.1093/pcp/pcr055 CrossRefPubMedGoogle Scholar
  12. Kakizaki Y, Nakatsuka T, Kawamura H, Abe J, Abe Y, Yamamura S, Nishihara M (2009) Development of codominant DNA marker distinguishing pink from blue flowers in Gentiana scabra. Breed Res 11:9–14. doi:10.1270/jsbbr.11.9 CrossRefGoogle Scholar
  13. Kodama K (2006). IV-9 Gentian In Japanese Society of Hortuculture Science (ed), Horticulture in Japan 2006. Shoukadoh Publishing, Kyoto 248–253Google Scholar
  14. Ma N, Chen W, Fan T, Tian Y, Zhang S, Zeng D, Li Y (2015) Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida). BMC Plant Biol 15:237. doi:10.1186/s12870-015-0623-1 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mishiba K, Nishihara M, Nakatsuka T, Abe Y, Hirano H, Yokoi T, Kikuchi A, Yamamura S (2005) Consistent transcriptional silencing of 35S-driven transgenes in gentian. Plant J 44:541–556. doi:10.1111/j.1365-313X.2005.02556.x CrossRefPubMedGoogle Scholar
  16. Mizunoe Y, Kubota S, Kanno A, Ozaki Y (2015) Morphological variation and AGAMOUS-like gene expression in double flowers of Cyclamen persicum mill. Hort J 84:140–147. doi:10.2503/hortj.MI-024 CrossRefGoogle Scholar
  17. Nakatsuka T, Saito M, Sato-Ushiku Y, Yamada E, Nakasato T, Hoshi N, Fujiwara K, Hikage T, Nishihara M (2011) Development of DNA markers that discriminate between white- and blue-flowers in Japanese gentian plants. Euphytica 184:335–344. doi:10.1007/s10681-011-0534-7 CrossRefGoogle Scholar
  18. Nakatsuka T, Saito M, Yamada E, Fujita K, Yamagishi N, Yoshikawa N, Nishihara M (2015) Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. BMC Plant Biol 15:182. doi:10.1186/s12870-015-0569-3
  19. Nakatsuka T, Saito M, Nishihara M (2016) Functional characterization of duplicated B-class MADS-box genes in Japanese gentian. Plant Cell Rep 35:895–904. doi:10.1007/s00299-015-1930-6
  20. Nishihara M, Hikage T, Yamada E, Nakatsuka T (2011) A single-base substitution suppresses flower color mutation caused by a novel miniature inverted-repeat transposable element in gentian. Mol Gen Genomics 286:371-382. doi:10.1007/s00438-011-0652-x
  21. Nishihara M, Mishiba K, Imamura T, Takahashi H, Nakatsuka T (2015) Molecular breeding of Japanese gentians - Applications of genetic transformation, metabolome analyses, and genetic markers. The Gentianaceae : Volume 2 - Biotechnology and Applications, Springer. doi:10.1007/978–3–642-54102-5_10
  22. Nitasaka E (2003) Insertion of an En/Spm-related transposable element into a floral homeotic gene DUPLICATED causes a double flower phenotype in the Japanese morning glory. Plant J 36:522–531. doi:10.1046/j.1365-313X.2003.01896.x CrossRefPubMedGoogle Scholar
  23. Saunders ER (1917) Studies in the inheritance of doubleness in flowers, II. Meconopsis, Althaea and Dianthus. J Genet 6:165–184CrossRefGoogle Scholar
  24. Scovel G, Ben-Meir H, Ovadis M, Itzhaki H, Vainstein A (1998) RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor Appl Genet 96:117–122. doi:10.1007/s001220050717 CrossRefGoogle Scholar
  25. Sharifi A, Oizumi K, Kubota S, Bagheri A, Shafaroudi SM, Nakano M, Kanno A (2015) Double flower formation in Tricyrtis macranthopsis is related to low expression of AGAMOUS ortholog gene. Sci Hort 193:337–345. doi:10.1016/j.scienta.2015.06.050 CrossRefGoogle Scholar
  26. Staub JEF, Serque FC, Gupta M (1996) Genetic markers, map construction, and their application in plant breeding. Hortscience 31:729–741Google Scholar
  27. Sun Y, Fan Z, Li X, Liu Z, Li J, Yin H (2014) Distinct double flower varieties in Camellia japonica exhibit both expansion and contraction of C-class gene expression. BMC Plant Biol 14:288. doi:10.1186/s12870-014-0288-1 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Suyama T, Tanigawa T, Yamada A, Matsuno T, Kunitake T, Saeki K, Nakamura C (2015) Inheritance of the double-flowered trait in decorative hydrangea flowers. Hort J 84:253–260. doi:10.2503/hortj.MI-018 CrossRefGoogle Scholar
  29. Tanaka Y, Oshima Y, Yamamura T, Sugiyama M, Mitsuda N, Ohtsubo N, Ohme-Takagi M, Terakawa T (2013) Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Sci Rep 3:2641. doi:10.1038/srep02641 PubMedPubMedCentralGoogle Scholar
  30. Yagi M (2015) Recent progress in genomic analysis of onamental plants, with a focus on carnation. Hort J 84:3–13. doi:10.2503/hortj.MI-IR01 CrossRefGoogle Scholar
  31. Yagi M, Yamamoto T, Isobe S, Tabata S, Hirakawa H, Amaguchi H, Tanase K, Onozaki T (2014) Identification of tightly linked SSR markers for flower type in carnation (Dianthus caryophyllus L.) Euphytica 198:175–183. doi:10.1007/s10681-014-1090-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Keisuke Tasaki
    • 1
  • Atsumi Higuchi
    • 1
  • Kohei Fujita
    • 1
  • Aiko Watanabe
    • 1
  • Nobuhiro Sasaki
    • 1
  • Kazumichi Fujiwara
    • 2
  • Hiroshi Abe
    • 3
  • Zenbi Naito
    • 3
  • Ryo Takahashi
    • 4
  • Takashi Hikage
    • 4
  • Masahiro Nishihara
    • 1
  1. 1.Iwate Biotechnology Research CenterIwateJapan
  2. 2.Iwate Agricultural Junior CollegeIwateJapan
  3. 3.Iwate Agricultural Research CenterIwateJapan
  4. 4.Hachimantai City Floricultural Research and Development CenterIwateJapan

Personalised recommendations