Molecular Breeding

, 36:160 | Cite as

Introgression of acylsugar chemistry QTL modifies the composition and structure of acylsugars produced by high-accumulating tomato lines

  • John R. Smeda
  • Anthony L. Schilmiller
  • Robert L. Last
  • Martha A. Mutschler


Acylsugars are important insect defense compounds produced at high levels by glandular trichomes of the wild tomato, Solanum pennellii. The ability to produce acylsugars at elevated levels was bred into the tomato line CU071026. This study utilized a marker-assisted backcross approach to individually introgress into CU071026 and to fine map the three quantitative trait loci (QTL) fatty acid 5 (FA5QTL), fatty acid 7 (FA7QTL), and fatty acid 8 (FA8QTL), which were previously associated with changes in acylsugar chemistry. Additional breeding with and fine mapping the previously introgressed QTL, fatty acid 2 (FA2QTL), was also conducted. The effect of these four QTL on acylsugar quality and quantity in the presence of the five introgressions of CU071026 was evaluated. Incorporation of the QTL altered acylsugar chemotype by modulating the length, orientation, and/or relative proportion of fatty acid acyl groups. The resulting quantities of acylsugar produced in most of the new lines were similar to that of CU071026; however, introgression of FA5QTL reduced acylsugar levels. The acylsugar lines containing each QTL were characterized for acylsugar level, trichome abundance, and acylsugar chemistry through gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The novel acylsugar chemotype lines created can contribute to elucidation of the mechanism of insect resistance mediated by acylsugars and help with identification of yet-unknown genes contributing to acylsugar synthesis and diversity.


Acylsugar chemistry Insect resistance Marker-assisted selection Metabolite diversity Plant defense Secondary metabolites 



2-Methylbutanoate (anteiso branched 5 carbon acyl group)


2-Methylpropanoate (iso branched 4 carbon acyl group)


3-Methylbutanoate (iso branched 5 carbon acyl group)


8-Methylnonanoate (iso branched 10 carbon acyl group)


9-Methyldecanoate (iso branched 11 carbon acyl group)


11-Methyldodecanoate (iso branched 13 carbon acyl group)


n-Decanoate (straight chain 10 carbon acyl group)


n-Dodecanoate (straight chain 12 carbon acyl group)



We thank Andre Kessler for valuable discussions on the implications of metabolite diversity as it relates to acylsugar-mediated insect control and critical reading of the manuscript.

We also thank Darlene DeJong for critical assistance and guidance with running molecular markers and acylsugar assays.

This project was supported in part by Agriculture and Food Research Initiative Competitive Grant no. 2013-67013-21135 from the USDA National Institute of Food and Agriculture, by the USDA National Institute of Food and Agriculture, Hatch project NYC-149440 (to M.A.M), and by National Science Foundation grant IOS–1025636 (to R.L.L.). Smeda was supported in part by an NSF GRFP graduate fellowship, as well as for one semester on by Agriculture and Food Research Initiative Competitive Grant no. 2010-85117-20551.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2016_584_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1295 kb)
11032_2016_584_MOESM2_ESM.xlsx (17 kb)
ESM 2 (XLSX 17 kb)


  1. Alseekh S, Zamir D et al (2015) Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell 27:485–512. doi: 10.1105/tpc.114.132266 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bates D, Maechler M, Bolker B, Walker S (2014) Linear mixed-effects models using Eigen and S4. R package version 1.0-5Google Scholar
  3. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664. doi: 10.2135/cropsci2008.03.0131 CrossRefGoogle Scholar
  4. Blauth SL, Churchill GA, Mutschler MA (1998) Identification of quantitative trait loci associated with acylsugar accumulation using intraspecific populations of the wild tomato, Lycopersicon pennellii. Theor Appl Genet 96:458–467. doi: 10.1007/s001220050762 CrossRefPubMedGoogle Scholar
  5. Blauth SL, Steffens JC, Churchill GA, Mutschler MA (1999) QTL analysis of acylsugar fatty acid constituents using intraspecific populations of the wild tomato Lycopersicon pennellii. Theor Appl Genet 99:373–381. doi: 10.1007/s001220051247 CrossRefGoogle Scholar
  6. Burke B, Goldsby G, Mudd JB (1987) Polar epicuticular lipids of Lycopersicon pennellii. Phytochemistry 26:2567–2571. doi: 10.1016/S0031-9422(00)83879-0 CrossRefGoogle Scholar
  7. Coates RM, Denissen JF, Juvik JA, Babka BA (1988) Identification of alpha-santalenoic and endo-beta-bergamotenoic acids as moth oviposition stimulants from wild tomato leaves. J Org Chem 53:2186–2192. doi: 10.1021/jo00245a012 CrossRefGoogle Scholar
  8. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847. doi: 10.1038/35081178 CrossRefPubMedGoogle Scholar
  9. Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179. doi: 10.1007/BF00022516 CrossRefGoogle Scholar
  10. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162PubMedPubMedCentralGoogle Scholar
  11. Fan P, Last RL et al (2016) In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. Proc Natl Acad Sci 113:E239–E248. doi: 10.1073/pnas.1517930113 CrossRefPubMedGoogle Scholar
  12. Fancelli M, Vendramim JD, Frighetto RTS, Lourencao AL (2005) Glandular exudate of tomato genotypes and development of B. tabaci (Genn.) (Sternorryncha: Aleyrodidae) biotype B. Neotrop Entomol 34:659–665. doi: 10.1590/S1519-566X2005000400017 CrossRefGoogle Scholar
  13. Fobes JF, Mudd J, Marsden M (1985) Epicuticular lipid on the leaves of L. pennellii and L. esculentum. Plant Physiol 77:567–570. doi: 10.1007/s11032-013-9849-5 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Frelichowski JE, Juvik JA (2001) Sesquiterpene carboxylic acids from a wild tomato species affect larval feeding behavior and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 94:1249–1259. doi: 10.1603/0022-0493-94.5.1249 CrossRefPubMedGoogle Scholar
  15. Ghosh B, Westbrook TC, Jones AD (2014) Comparative structural profiling of trichome specialized metabolites in tomato (Solanum lycopersicum) and S. habrochaites: acylsugar profiles revealed by UHPLC/MS and NMR. Metabolomics 10:496–507. doi: 10.1007/s11306-013-0585-y CrossRefPubMedGoogle Scholar
  16. Goffreda JC, Mutschler MA (1989) Inheritance of potato aphid resistance in hybrids between Lycopersicon esculentum and L. pennellii. Theor Appl Genet 78:210–216. doi: 10.1007/BF00288801 CrossRefPubMedGoogle Scholar
  17. Goffreda JC, Mutschler MA, Steffens JC (1990) Association of epicuticular sugars with aphid resistance in hybrids with wild tomato. J Am Soc Hortic Sci 117:161–164Google Scholar
  18. Hawthorne DM, Shapiro JA, Tingey WM, Mutschler MA (1992) Trichome-borne and artificially applied acylsugars of wild tomato deter feeding and oviposition of the leaf- miner, Liriomyza trifolii. Entomol Exp Appl 65:65–73. doi: 10.1111/j.1570-7458.1992.tb01628.x CrossRefGoogle Scholar
  19. Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant breeding reviews 22:9–112Google Scholar
  20. JMP®, Version 11. SAS Institute Inc., Cary, NC, 1989-2007Google Scholar
  21. Juvik J, Shapiro JA, Young TE, Mutschler MA (1994) Acyl-glucoses of the wild tomato Lycopersicon pennellii alter behavior and reduce growth and survival of Helicoverpa zea and Spodoptera exigua. J Econ Entomol 87:482–492. doi: 10.1007/s11032-013-9849-5 CrossRefGoogle Scholar
  22. Kim J, Kang K, Gonzales-Vigil E, Shi F, Jones D, Barry CS, Last RL (2012) Striking natural diversity in glandular trichome acylsugar composition is shaped by variation at the acyltransferase2 locus in the wild tomato Solanum habrochaites. Plant Physiol 160:1854–1870. doi: 10.1104/pp.112.204735 CrossRefPubMedPubMedCentralGoogle Scholar
  23. King R, Calhoun A (1988) 2,3-di-O_ and 1,2,3-tri-O-Acylated glucose esters from the glandular trichomes of Datura metel. Phytochemistry 27:3761–3763. doi: 10.1016/0031-9422(88)83013-9 CrossRefGoogle Scholar
  24. King RR, Calhoun LA, Singh RP (1988) 3,4-di-O- and 2,3,4-tri-O-Acylated glucose esters from the glandular trichomes of Nontuberous solanum species. Phytochemistry 27:3765–3768. doi: 10.1016/0031-9422(88)83014-0 CrossRefGoogle Scholar
  25. King RR, Pelletier Y, Singh RP, Calhoun LA (1986) 3,4-di-O-Isobutyryl-6-O-caprylsucrose: the major component of a novel sucrose ester complex from the type B glandular trichomes of Solanum berthaultii hawkes (Pl 473340). J Chem Soc Chem Comm 14:1078–1079. doi: 10.1039/C39860001078 CrossRefGoogle Scholar
  26. Leckie BM, Mutschler MA et al (2016) Differential and synergistic functionality of acylsugars in suppressing oviposition by insect herbivores. PLoS One 11:1–19. doi: 10.1371/journal.pone.0153345 CrossRefGoogle Scholar
  27. Leckie BM, Halitschke R, De Jong DM, Smeda JR, Kessler A, Mutschler MA (2014) Quantitative trait loci regulating the fatty acid profile of acylsugars in tomato. Mol Breed 34:1201–1213. doi: 10.1007/s11032-013-9849-5 CrossRefGoogle Scholar
  28. Leckie BM, DeJong DM, Mutschler MA (2012) Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silverleaf whiteflies. Mol Breed 31:957–970. doi: 10.1007/s11032-012-9746-3 CrossRefGoogle Scholar
  29. Leckie BM, DeJong DM, Mutschler MA (2013) Quantitative trait loci regulating sugar moiety of acylsugars in tomato. Mol Breed 31:957–970. doi: 10.1007/s11032-013-9849-5 CrossRefGoogle Scholar
  30. Li L, Howe GA et al (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143. doi: 10.1105/tpc.017954 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liedl BE, Lawson DM, White KK, Shapiro JA, Cohen DE, Carson WG, Trumble JT, Mutschler MA (1995) Acylglucoses of the wild tomato Lycopersicon pennellii alters settling and reduces oviposition of Bemisia argentifolii. J Econ Entomol 88:742–748. doi: 10.1093/jee/88.3.742 CrossRefGoogle Scholar
  32. Long W, Li Y, Zhou W, Ling HQ, Zheng S (2013) Sequence-based SSR marker development and their application in defining the introgressions of LA0716 (Solanum pennellii) in the background of cv. M82 (Solanum lycopersicum). PLoS One 8:e81091. doi: 10.1371/journal.pone.0081091 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mutschler MA, Wintermantel WM (2006) Reducing virus associated crop loss through resistance to insect vectors. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Dordrecht, pp. 241–260CrossRefGoogle Scholar
  34. Ning J, Last RL et al (2015) A feedback insensitive isopropylmalate synthase affects acylsugar composition in cultivated and wild tomato. Plant Physiol 169:1821–1835. doi: 10.1104/pp.15.00474 PubMedPubMedCentralGoogle Scholar
  35. Ohya I, Shinozaki Y, Tobita T, Takahashi H, Matsuzaki T (1996) Sucrose esters from the surface lipids of Petunia hybrida. Phytochemistry 41:787–789. doi: 10.1016/0031-9422(95)00679-6 CrossRefGoogle Scholar
  36. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38:500–501CrossRefPubMedGoogle Scholar
  37. Rodriguez AE, Tingey WM, Mutschler MA (1993) Acylsugars produced by type IV trichomes of Lycopersicon pennellii (Corr.)D’Arcy deter settling of the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). J Econ Entomol 86:34–39. doi: 10.1093/jee/86.1.34 CrossRefGoogle Scholar
  38. Schilmiller AL, Charbonneau AL, Last RL (2012) Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proc Natl Acad Sci U S A 109:16377–16382. doi: 10.1073/pnas.1207906109 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schilmiller AL, Gilgallon K, Ghosh B, Jones AD, Last RL (2016) Acylsugar acylhydrolases: carboxylesterase catalyzed hydrolysis of acylsugars in tomato trichomes. Plant Physiol 170:1331–1344. doi: 10.1104/pp.15.01348 PubMedPubMedCentralGoogle Scholar
  40. Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711. doi: 10.1111/j.1365-313X.2008.03432.x CrossRefPubMedGoogle Scholar
  41. Schilmiller AL, Moghe GD, Fan P, Ghosh B, Ning J, Jones AD, Last RL (2015) Functionally divergent alleles and duplicated loci encoding an acyltransferase contribute to acylsugar metabolite diversity in Solanum trichomes. Plant Cell 27:1002–1017. doi: 10.1105/tpc.15.00087 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schilmiller AL, Shi F, Kim J, Charbonneau A, Holmes D, Jones AD, Last RL (2010) Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant J 62:391–403CrossRefPubMedPubMedCentralGoogle Scholar
  43. Setter TL, Flannigan BA, Melkonian J (2001) Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci 41:1530–1540. doi: 10.2135/cropsci2001.4151530x CrossRefGoogle Scholar
  44. Severson RF, Johnson AW, Jackson DM (1985) Cuticular constituents of tobacco: factors affecting their production and their role in insect and disease resistance and smoke quality. Recent Adv Tobacco Sci 11:105–174Google Scholar
  45. Shapiro J, Steffens J, Mutschler MA (1994) Acylsugars of the wild tomato Lycopersicon pennellii in relation to its geo-graphic distribution. Biochem Syst Ecol 22:545–561. doi: 10.1016/0305-1978(94)90067-1 CrossRefGoogle Scholar
  46. Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A et al (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7:e40563. doi: 10.1371/journal.pone.0040563 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Slocombe SP, Schauvinhold I, McQuinn RP, Besser K, Welsby NA, Harper A, Aziz N, Li Y, Larson TR, Giovannoni J, Dixon RA, Broun P (2008) Transcriptomic and reverse genetic analyses of branched-chain fatty acid and acyl sugar production in Solanum pennellii and Nicotiana benthamiana. Plant Physiol 148:1830–1846. doi: 10.1104/pp.108.129510 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Weinhold A, Baldwin IT (2011) Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. PNAS 108:7855–7859. doi: 10.1073/pnas.1101306108 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wink M (2010) Functions and biotechnology of plant secondary metabolites. Wiley-Blackwell, OxfordCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • John R. Smeda
    • 1
  • Anthony L. Schilmiller
    • 2
  • Robert L. Last
    • 3
    • 4
  • Martha A. Mutschler
    • 1
  1. 1.Plant Breeding and Genetics Section, School of Integrative Plant SciencesCornell UniversityIthacaUSA
  2. 2.Mass Spectrometry and Metabolomics CoreMichigan State UniversityEast LansingUSA
  3. 3.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA
  4. 4.Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations