Skip to main content

Advertisement

Log in

Introgression of acylsugar chemistry QTL modifies the composition and structure of acylsugars produced by high-accumulating tomato lines

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Acylsugars are important insect defense compounds produced at high levels by glandular trichomes of the wild tomato, Solanum pennellii. The ability to produce acylsugars at elevated levels was bred into the tomato line CU071026. This study utilized a marker-assisted backcross approach to individually introgress into CU071026 and to fine map the three quantitative trait loci (QTL) fatty acid 5 (FA5QTL), fatty acid 7 (FA7QTL), and fatty acid 8 (FA8QTL), which were previously associated with changes in acylsugar chemistry. Additional breeding with and fine mapping the previously introgressed QTL, fatty acid 2 (FA2QTL), was also conducted. The effect of these four QTL on acylsugar quality and quantity in the presence of the five introgressions of CU071026 was evaluated. Incorporation of the QTL altered acylsugar chemotype by modulating the length, orientation, and/or relative proportion of fatty acid acyl groups. The resulting quantities of acylsugar produced in most of the new lines were similar to that of CU071026; however, introgression of FA5QTL reduced acylsugar levels. The acylsugar lines containing each QTL were characterized for acylsugar level, trichome abundance, and acylsugar chemistry through gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The novel acylsugar chemotype lines created can contribute to elucidation of the mechanism of insect resistance mediated by acylsugars and help with identification of yet-unknown genes contributing to acylsugar synthesis and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ai-C5:

2-Methylbutanoate (anteiso branched 5 carbon acyl group)

i-C4:

2-Methylpropanoate (iso branched 4 carbon acyl group)

i-C5:

3-Methylbutanoate (iso branched 5 carbon acyl group)

i-C10:

8-Methylnonanoate (iso branched 10 carbon acyl group)

i-C11:

9-Methyldecanoate (iso branched 11 carbon acyl group)

i-C13:

11-Methyldodecanoate (iso branched 13 carbon acyl group)

n-C10:

n-Decanoate (straight chain 10 carbon acyl group)

n-C12:

n-Dodecanoate (straight chain 12 carbon acyl group)

References

  • Alseekh S, Zamir D et al (2015) Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell 27:485–512. doi:10.1105/tpc.114.132266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) Linear mixed-effects models using Eigen and S4. R package version 1.0-5

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664. doi:10.2135/cropsci2008.03.0131

    Article  Google Scholar 

  • Blauth SL, Churchill GA, Mutschler MA (1998) Identification of quantitative trait loci associated with acylsugar accumulation using intraspecific populations of the wild tomato, Lycopersicon pennellii. Theor Appl Genet 96:458–467. doi:10.1007/s001220050762

    Article  CAS  PubMed  Google Scholar 

  • Blauth SL, Steffens JC, Churchill GA, Mutschler MA (1999) QTL analysis of acylsugar fatty acid constituents using intraspecific populations of the wild tomato Lycopersicon pennellii. Theor Appl Genet 99:373–381. doi:10.1007/s001220051247

    Article  Google Scholar 

  • Burke B, Goldsby G, Mudd JB (1987) Polar epicuticular lipids of Lycopersicon pennellii. Phytochemistry 26:2567–2571. doi:10.1016/S0031-9422(00)83879-0

    Article  CAS  Google Scholar 

  • Coates RM, Denissen JF, Juvik JA, Babka BA (1988) Identification of alpha-santalenoic and endo-beta-bergamotenoic acids as moth oviposition stimulants from wild tomato leaves. J Org Chem 53:2186–2192. doi:10.1021/jo00245a012

    Article  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847. doi:10.1038/35081178

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179. doi:10.1007/BF00022516

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan P, Last RL et al (2016) In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. Proc Natl Acad Sci 113:E239–E248. doi:10.1073/pnas.1517930113

    Article  CAS  PubMed  Google Scholar 

  • Fancelli M, Vendramim JD, Frighetto RTS, Lourencao AL (2005) Glandular exudate of tomato genotypes and development of B. tabaci (Genn.) (Sternorryncha: Aleyrodidae) biotype B. Neotrop Entomol 34:659–665. doi:10.1590/S1519-566X2005000400017

    Article  Google Scholar 

  • Fobes JF, Mudd J, Marsden M (1985) Epicuticular lipid on the leaves of L. pennellii and L. esculentum. Plant Physiol 77:567–570. doi:10.1007/s11032-013-9849-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frelichowski JE, Juvik JA (2001) Sesquiterpene carboxylic acids from a wild tomato species affect larval feeding behavior and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 94:1249–1259. doi:10.1603/0022-0493-94.5.1249

    Article  CAS  PubMed  Google Scholar 

  • Ghosh B, Westbrook TC, Jones AD (2014) Comparative structural profiling of trichome specialized metabolites in tomato (Solanum lycopersicum) and S. habrochaites: acylsugar profiles revealed by UHPLC/MS and NMR. Metabolomics 10:496–507. doi:10.1007/s11306-013-0585-y

    Article  CAS  PubMed  Google Scholar 

  • Goffreda JC, Mutschler MA (1989) Inheritance of potato aphid resistance in hybrids between Lycopersicon esculentum and L. pennellii. Theor Appl Genet 78:210–216. doi:10.1007/BF00288801

    Article  CAS  PubMed  Google Scholar 

  • Goffreda JC, Mutschler MA, Steffens JC (1990) Association of epicuticular sugars with aphid resistance in hybrids with wild tomato. J Am Soc Hortic Sci 117:161–164

    Google Scholar 

  • Hawthorne DM, Shapiro JA, Tingey WM, Mutschler MA (1992) Trichome-borne and artificially applied acylsugars of wild tomato deter feeding and oviposition of the leaf- miner, Liriomyza trifolii. Entomol Exp Appl 65:65–73. doi:10.1111/j.1570-7458.1992.tb01628.x

    Article  CAS  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant breeding reviews 22:9–112

    Google Scholar 

  • JMP®, Version 11. SAS Institute Inc., Cary, NC, 1989-2007

  • Juvik J, Shapiro JA, Young TE, Mutschler MA (1994) Acyl-glucoses of the wild tomato Lycopersicon pennellii alter behavior and reduce growth and survival of Helicoverpa zea and Spodoptera exigua. J Econ Entomol 87:482–492. doi:10.1007/s11032-013-9849-5

    Article  CAS  Google Scholar 

  • Kim J, Kang K, Gonzales-Vigil E, Shi F, Jones D, Barry CS, Last RL (2012) Striking natural diversity in glandular trichome acylsugar composition is shaped by variation at the acyltransferase2 locus in the wild tomato Solanum habrochaites. Plant Physiol 160:1854–1870. doi:10.1104/pp.112.204735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King R, Calhoun A (1988) 2,3-di-O_ and 1,2,3-tri-O-Acylated glucose esters from the glandular trichomes of Datura metel. Phytochemistry 27:3761–3763. doi:10.1016/0031-9422(88)83013-9

    Article  CAS  Google Scholar 

  • King RR, Calhoun LA, Singh RP (1988) 3,4-di-O- and 2,3,4-tri-O-Acylated glucose esters from the glandular trichomes of Nontuberous solanum species. Phytochemistry 27:3765–3768. doi:10.1016/0031-9422(88)83014-0

    Article  CAS  Google Scholar 

  • King RR, Pelletier Y, Singh RP, Calhoun LA (1986) 3,4-di-O-Isobutyryl-6-O-caprylsucrose: the major component of a novel sucrose ester complex from the type B glandular trichomes of Solanum berthaultii hawkes (Pl 473340). J Chem Soc Chem Comm 14:1078–1079. doi:10.1039/C39860001078

    Article  Google Scholar 

  • Leckie BM, Mutschler MA et al (2016) Differential and synergistic functionality of acylsugars in suppressing oviposition by insect herbivores. PLoS One 11:1–19. doi:10.1371/journal.pone.0153345

    Article  Google Scholar 

  • Leckie BM, Halitschke R, De Jong DM, Smeda JR, Kessler A, Mutschler MA (2014) Quantitative trait loci regulating the fatty acid profile of acylsugars in tomato. Mol Breed 34:1201–1213. doi:10.1007/s11032-013-9849-5

    Article  CAS  Google Scholar 

  • Leckie BM, DeJong DM, Mutschler MA (2012) Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silverleaf whiteflies. Mol Breed 31:957–970. doi:10.1007/s11032-012-9746-3

    Article  Google Scholar 

  • Leckie BM, DeJong DM, Mutschler MA (2013) Quantitative trait loci regulating sugar moiety of acylsugars in tomato. Mol Breed 31:957–970. doi:10.1007/s11032-013-9849-5

    Article  CAS  Google Scholar 

  • Li L, Howe GA et al (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143. doi:10.1105/tpc.017954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liedl BE, Lawson DM, White KK, Shapiro JA, Cohen DE, Carson WG, Trumble JT, Mutschler MA (1995) Acylglucoses of the wild tomato Lycopersicon pennellii alters settling and reduces oviposition of Bemisia argentifolii. J Econ Entomol 88:742–748. doi:10.1093/jee/88.3.742

    Article  CAS  Google Scholar 

  • Long W, Li Y, Zhou W, Ling HQ, Zheng S (2013) Sequence-based SSR marker development and their application in defining the introgressions of LA0716 (Solanum pennellii) in the background of cv. M82 (Solanum lycopersicum). PLoS One 8:e81091. doi:10.1371/journal.pone.0081091

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutschler MA, Wintermantel WM (2006) Reducing virus associated crop loss through resistance to insect vectors. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Dordrecht, pp. 241–260

    Chapter  Google Scholar 

  • Ning J, Last RL et al (2015) A feedback insensitive isopropylmalate synthase affects acylsugar composition in cultivated and wild tomato. Plant Physiol 169:1821–1835. doi:10.1104/pp.15.00474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohya I, Shinozaki Y, Tobita T, Takahashi H, Matsuzaki T (1996) Sucrose esters from the surface lipids of Petunia hybrida. Phytochemistry 41:787–789. doi:10.1016/0031-9422(95)00679-6

    Article  CAS  Google Scholar 

  • Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38:500–501

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez AE, Tingey WM, Mutschler MA (1993) Acylsugars produced by type IV trichomes of Lycopersicon pennellii (Corr.)D’Arcy deter settling of the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). J Econ Entomol 86:34–39. doi:10.1093/jee/86.1.34

    Article  CAS  Google Scholar 

  • Schilmiller AL, Charbonneau AL, Last RL (2012) Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proc Natl Acad Sci U S A 109:16377–16382. doi:10.1073/pnas.1207906109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilmiller AL, Gilgallon K, Ghosh B, Jones AD, Last RL (2016) Acylsugar acylhydrolases: carboxylesterase catalyzed hydrolysis of acylsugars in tomato trichomes. Plant Physiol 170:1331–1344. doi:10.1104/pp.15.01348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711. doi:10.1111/j.1365-313X.2008.03432.x

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Moghe GD, Fan P, Ghosh B, Ning J, Jones AD, Last RL (2015) Functionally divergent alleles and duplicated loci encoding an acyltransferase contribute to acylsugar metabolite diversity in Solanum trichomes. Plant Cell 27:1002–1017. doi:10.1105/tpc.15.00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilmiller AL, Shi F, Kim J, Charbonneau A, Holmes D, Jones AD, Last RL (2010) Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant J 62:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setter TL, Flannigan BA, Melkonian J (2001) Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci 41:1530–1540. doi:10.2135/cropsci2001.4151530x

    Article  CAS  Google Scholar 

  • Severson RF, Johnson AW, Jackson DM (1985) Cuticular constituents of tobacco: factors affecting their production and their role in insect and disease resistance and smoke quality. Recent Adv Tobacco Sci 11:105–174

    CAS  Google Scholar 

  • Shapiro J, Steffens J, Mutschler MA (1994) Acylsugars of the wild tomato Lycopersicon pennellii in relation to its geo-graphic distribution. Biochem Syst Ecol 22:545–561. doi:10.1016/0305-1978(94)90067-1

    Article  CAS  Google Scholar 

  • Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A et al (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7:e40563. doi:10.1371/journal.pone.0040563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slocombe SP, Schauvinhold I, McQuinn RP, Besser K, Welsby NA, Harper A, Aziz N, Li Y, Larson TR, Giovannoni J, Dixon RA, Broun P (2008) Transcriptomic and reverse genetic analyses of branched-chain fatty acid and acyl sugar production in Solanum pennellii and Nicotiana benthamiana. Plant Physiol 148:1830–1846. doi:10.1104/pp.108.129510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinhold A, Baldwin IT (2011) Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. PNAS 108:7855–7859. doi:10.1073/pnas.1101306108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wink M (2010) Functions and biotechnology of plant secondary metabolites. Wiley-Blackwell, Oxford

    Book  Google Scholar 

Download references

Acknowledgements

We thank Andre Kessler for valuable discussions on the implications of metabolite diversity as it relates to acylsugar-mediated insect control and critical reading of the manuscript.

We also thank Darlene DeJong for critical assistance and guidance with running molecular markers and acylsugar assays.

This project was supported in part by Agriculture and Food Research Initiative Competitive Grant no. 2013-67013-21135 from the USDA National Institute of Food and Agriculture, by the USDA National Institute of Food and Agriculture, Hatch project NYC-149440 (to M.A.M), and by National Science Foundation grant IOS–1025636 (to R.L.L.). Smeda was supported in part by an NSF GRFP graduate fellowship, as well as for one semester on by Agriculture and Food Research Initiative Competitive Grant no. 2010-85117-20551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha A. Mutschler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1295 kb)

ESM 2

(XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smeda, J.R., Schilmiller, A.L., Last, R.L. et al. Introgression of acylsugar chemistry QTL modifies the composition and structure of acylsugars produced by high-accumulating tomato lines. Mol Breeding 36, 160 (2016). https://doi.org/10.1007/s11032-016-0584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0584-6

Keywords

Navigation