Molecular Breeding

, 36:157

Molecular, physiological, and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance

  • Patricia T. Honna
  • Renata Fuganti-Pagliarini
  • Leonardo C. Ferreira
  • Mayla D. C. Molinari
  • Silvana R. R. Marin
  • Maria C. N. de Oliveira
  • José R. B. Farias
  • Norman Neumaier
  • Liliane M. Mertz-Henning
  • Norihito Kanamori
  • Kazuo Nakashima
  • Hironori Takasaki
  • Kaoru Urano
  • Kazuo Shinozaki
  • Kazuko Yamaguchi-Shinozaki
  • Janete A. Desidério
  • Alexandre L. Nepomuceno
Article
  • 399 Downloads

Abstract

Water deficit may occur at any stage of crop development, affecting productivity and causing economic losses. In response to drought, raffinose family oligosaccharides (RFOs) are accumulated in plant tissues stabilizing and protecting cell membranes and keeping the vital functions. The enzyme galactinol synthase (GolS, EC 2.4.1.123) catalyzes the first step in the biosynthesis of RFOs. In our study, soybean events overexpressing 35S:AtGolS2 were molecularly, physiological, and agronomical characterized, under drought simulated in greenhouse and in field conditions during the crop season 2014/2015. The conventional soybean cultivar BRS 184 was transformed and five positive events were obtained. Four events transmitted the transgene to further generations and in the events 2Ia1 and 2Ia4, two to four copies of AtGols2 gene were observed. Results in greenhouse showed that the overexpression of AtGolS2 in genetically modified (GM) plants led to increased galactinol transcripts, probably resulting in changes in carbohydrate metabolism. Accumulation of these transcripts that may have acted as osmoprotectors, lead to higher drought tolerance and survival rate of 2Ia4 plants. In addition, in field conditions, higher yield was observed for 2Ia4 plants under irrigated (IRR) and non-irrigated (NIRR) treatments. This result can be due to the increased synthesis of RFOs even under well-watered conditions. This field screening showed promising results for drought tolerance, suggesting that 2Ia4 plants may be useful in a breeding program for the development of drought-tolerant plants. However, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT plants under water deficit.

Keywords

Glycine max L. Merrill Abiotic stresses Galactinol synthase Raffinose 

Supplementary material

11032_2016_570_MOESM1_ESM.docx (13 kb)
Table S1(DOCX 13.1 kb)
11032_2016_570_MOESM2_ESM.docx (14 kb)
Table S2(DOCX 13.6 kb)
11032_2016_570_MOESM3_ESM.docx (12 kb)
Table S3(DOCX 12.4 kb)
11032_2016_570_MOESM4_ESM.docx (13 kb)
Table S4(DOCX 13.2 kb)
11032_2016_570_MOESM5_ESM.docx (34 kb)
Figure S1(DOCX 34.2 kb)
11032_2016_570_MOESM6_ESM.docx (33 kb)
Figure S2(DOCX 32.2 kb)
11032_2016_570_MOESM7_ESM.docx (711 kb)
Figure S3(DOCX 711 kb)
11032_2016_570_MOESM8_ESM.docx (21 kb)
Figure S4(DOCX 21.3 kb)

References

  1. Amara I, Capellades M, Ludevid MD et al (2013) Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. J Plant Physiol 170:864–873. doi:10.1016/j.jplph.2013.01.004 CrossRefPubMedGoogle Scholar
  2. Barbosa EGG, Leite JP, Marin SRR et al (2013) Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Mol Biol Report 31:719–730. doi:10.1007/s11105-012-0541-4 CrossRefGoogle Scholar
  3. Battaglia M, Covarrubias AA (2013) Late embryogenesis abundant (LEA) proteins in legumes. Front Plant Sci 4:190. doi:10.3389/fpls.2013.00190 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54. doi:10.1016/S1360-1385(97)82562-9 CrossRefGoogle Scholar
  5. Casali N, Preston A (2003) E. coli Plasmid vectors. Plasmid 235:55–69. doi:10.1385/1592594093 Google Scholar
  6. Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384. doi:10.1093/jxb/erh269 CrossRefPubMedGoogle Scholar
  7. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  8. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703. doi:10.1126/science.223.4637.701 CrossRefPubMedGoogle Scholar
  9. Crowe JH, Oliver AE, Hoekstra FA, Crowe LM (1997) Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 35:20–30. doi:10.1006/cryo.1997.2020 CrossRefPubMedGoogle Scholar
  10. Crowe JH, Crowe L, Carpenter JE et al (2011) Anhydrobiosis: cellular adaptation to extreme dehydration. Handb Physiol Physiol:1445–1477. doi:10.1002/cphy.cp130220
  11. dos Santos TB, Budzinski IGF, Marura CJ, Petkowicz CLO, Pereira LFP, Vieira LGE (2011) Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiol Biochem 49:441–448CrossRefPubMedGoogle Scholar
  12. dos Santos TB, Lima RB, Nagashima GT, Petkowicz CLO, Carpentieri-Pípolo V, Pereira LFP, Domingues DS, Vieira LGE (2015) Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genet Mol Biol 38(2):182–190. doi:10.1590/S1415-475738220140171 CrossRefGoogle Scholar
  13. Downie B, Gurusinghe S, Dahal P, Thacker RR, Snyder JC, Nonogaki H, Yim K, Fukanaga K, Alvarado V, Bradford KJ (2003) Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol 131:1347–1359CrossRefPubMedPubMedCentralGoogle Scholar
  14. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  15. Elsayed AI, Rafudeen MS, Golldack D (2014) Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol 16:1–8. doi:10.1111/plb.12053 CrossRefPubMedGoogle Scholar
  16. Embrapa S (2015) Comunicado Tecnico 86. Teores de oleo e proteina em soja: fatores envolvidos e qualidade para a industria. ISSN. 2176–2889Google Scholar
  17. Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci., 72:673–689. doi:10.1007/s00018-014-1767-0
  18. Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development description for soybeans, Glycine max (L.) Merril. Crop Sci 11:929–931. doi:10.2135/cropsci1971.0011183X001100060051x CrossRefGoogle Scholar
  19. Flexas J, Bota J, Loreto F et al (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279. doi:10.1055/s-2004-820867 CrossRefPubMedGoogle Scholar
  20. Heil C (2010) Rapid, multi-component analysis of soybeans by FT-NIR spectroscopy. Thermo Fisher Scientific, Madison, p. 3 (Application note: 51954) Google Scholar
  21. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218. doi:10.1007/BF01977351 CrossRefGoogle Scholar
  22. Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741. doi:10.1146/annurev-arplant-050213-040000 CrossRefPubMedGoogle Scholar
  23. Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291. doi:10.1038/7036 CrossRefPubMedGoogle Scholar
  24. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350. doi:10.1093/pcp/pch037 CrossRefPubMedGoogle Scholar
  25. Kohli A, Twyman RM, Abranches R et al (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258CrossRefPubMedGoogle Scholar
  26. Liu J-JJ, Krenz DC, Galvez AF, Lumen BOD (1998) Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Sci 134:11–20. doi:10.1016/s0168-9452(98)00042-9 CrossRefGoogle Scholar
  27. Liu Y, Zheng Y, Zhang Y et al (2010) Soybean PM2 protein (LEA3) confers the tolerance of Escherichia coli and stabilization of enzyme activity under diverse stresses. Curr Microbiol 60:373–378. doi:10.1007/s00284-009-9552-2 CrossRefPubMedGoogle Scholar
  28. Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Bendix C, Nakayama TJ, Celaya B, Hugo Molinari BC, Oliveira MCN, Harmon FG, Nepomuceno AL (2014) Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One 9(1). doi:10.1371/journal.pone.0086402
  29. Marinho JP, Kanamori N, Ferreira LC et al (2015) Characterization of molecular and physiological responses under water deficit of genetically modified soybean plants overexpressing the AtAREB1 transcription factor. Plant Mol Biol Rep. doi:10.1007/s11105-015-0928-0 Google Scholar
  30. Morran S, Eini O, Pyvovarenko T et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249. doi:10.1111/j.1467-7652.2010.00547.x CrossRefPubMedGoogle Scholar
  31. Olhoft PM, Flagel LE, Somers DA (2004) T-DNA locus structure in a large population of soybean plants transformed using the agrobacterium-mediated cotyledonary-node method. Plant Biotechnol J 2:289–300. doi:10.1111/j.1467-7652.2004.00070.x CrossRefPubMedGoogle Scholar
  32. Oltmanns H, Frame B, Lee L-Y et al (2010) Generation of backbone-free, low transgene copy plants by launching T-DNA from the agrobacterium chromosome. Plant Physiol 152:1158–1166. doi:10.1104/pp.109.148585 CrossRefPubMedGoogle Scholar
  33. Palta JA, Kobata T, Turner NC, Fillery IR (1994) Remobilization of carbon and nitrogen in wheat as influenced by postanthesis water deficits. Crop Sci 34:118–124. doi:10.2135/cropsci1994.0011183X003400010021x CrossRefGoogle Scholar
  34. Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158CrossRefPubMedPubMedCentralGoogle Scholar
  35. Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859. doi:10.1071/FP12079 CrossRefGoogle Scholar
  36. Pattanagul W, Madore MA (1999) Water deficit effects on raffinose family oligosaccharide metabolism in coleus. Plant Physiol 121:987–993. doi:10.1104/pp.121.3.987
  37. Paz MM, Martinez JC, Kalvig AB et al (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213. doi:10.1007/s00299-005-0048-7 CrossRefPubMedGoogle Scholar
  38. Peters S, Mundree SG, Thomson JA et al (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956. doi:10.1093/jxb/erm056 CrossRefPubMedGoogle Scholar
  39. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi:10.1093/nar/29.9.e45 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pillet J, Egert A, Pieri P, Lecourieux F, Kappel C, Charon J, Gomes E, Keller F, Delrot S, Lecourieux D (2012) VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant Cell Physiol 53:1776–1792CrossRefPubMedGoogle Scholar
  41. Rech EL, Vianna GR, Aragão FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3(3):1–10CrossRefGoogle Scholar
  42. Rodrigues FA, Fuganti-Pagliarini R, Marcolino-Gomes J, Nakayama TJ, Molinari HBC, Lobo FP, Harmon FG, Nepomuceno AL (2015) Daytime soybean transcriptome fluctuations during water deficit stress. BMC Genomics 16:505. doi:10.1186/s12864-015-1731-x CrossRefPubMedPubMedCentralGoogle Scholar
  43. Saito M, Yoshida M (2011) Expression analysis of the gene family associated with raffinose accumulation in rice seedlings under cold stress. Short communication. J Plant Physiol 168(18):2268–2271CrossRefPubMedGoogle Scholar
  44. Salinet LH (2009) Avaliação fisiológica e agronômica de soja geneticamente modificada para maior tolerância à seca. Universidade de São PauloGoogle Scholar
  45. Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341. doi:10.1046/j.1365-3040.2002.00754.x CrossRefPubMedGoogle Scholar
  46. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227. doi:10.1093/jxb/erl164 CrossRefPubMedGoogle Scholar
  47. Suia X, Menga F, Wanga H, Weia Y, Lia R, Wanga Z, Hua L, Wangb S, Zhanga Z (2012) Molecular cloning, characteristics and low temperature response of raffinose synthase gene in Cucumis sativus L. J Plant Physiol 16(18):1883–1891CrossRefGoogle Scholar
  48. Sun WQ, Leopold AC, Crowe LM, Crowe JH (1996) Stability of dry liposomes in sugar glasses. Biophys J 70:1769–1776. doi:10.1016/S0006-3495(96)79740-0 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Taji T, Ohsumi C, Iuchi S et al (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426. doi:10.1046/j.0960-7412 CrossRefPubMedGoogle Scholar
  50. Takahashi R, Joshee N, Kitagawa Y (1994) Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress regulated genes in rice. Plant Mol Biol 26:339–352CrossRefPubMedGoogle Scholar
  51. Thornthwaite CW, Mather JR (1955) The water balance. Laboratory of Climatology, CentertonGoogle Scholar
  52. Tran L-SP, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39. doi:10.4161/gmcr.1.1.10569 CrossRefPubMedGoogle Scholar
  53. Tunnacliffe A, Hincha DK, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. In: Lubzens E, Cerda J, Clark M (eds) dormancy and resistance in harsh environments. Springer, Heidelberg. Top Curr Genet 21:91–108. doi:10.1007/978-3-642-12422-8_6 CrossRefGoogle Scholar
  54. Turner N, Wright G, Siddique K (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71:123–231. doi:10.1016/S0065-2113(01)71015-2 Google Scholar
  55. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132. doi:10.1016/j.copbio.2005.02.001 CrossRefPubMedGoogle Scholar
  56. Wang S, Wan C, Wang Y et al (2004) The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. J Arid Environ 56:525–539. doi:10.1016/S0140-1963(03)00063-6 CrossRefGoogle Scholar
  57. Wang D, Yao W, Song Y, Liu W, Wang Z (2012) Molecular characterization and expression of three galactinol synthase genes that confer stress tolerance in Salvia miltiorrhiza. J Plant Physiol 169:1838–1848CrossRefPubMedGoogle Scholar
  58. Wang X, Chen H, Sha A et al (2015) Laboratory testing and molecular analysis of the resistance of wild and cultivated soybeans to cotton bollworm, Helicoverpa armigera (Hübner). The Crop Journal 3:19–28. doi:10.1016/j.cj.2014.08.004 CrossRefGoogle Scholar
  59. Wolkers WF, McCready S, Brandt WF et al (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta - Protein Struct Mol Enzymol 1544:196–206. doi:10.1016/S0167-4838(00)00220-X CrossRefGoogle Scholar
  60. Zhou J, Yang Y, Yu J, Wang L, Yu X, Ohtani M, Kusano M, Saito K, Demura T, Zhuge Q (2014) Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses. J Plant Res 127:347–358. doi:10.1007/s10265-013-0597-8 CrossRefPubMedGoogle Scholar
  61. Zhuo C, Wang T, Lu S, Zhao Y, Li X, Guo Z (2013) A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol Plant 149(1):67–78. doi:10.1111/ppl.12019 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Patricia T. Honna
    • 1
    • 2
  • Renata Fuganti-Pagliarini
    • 2
  • Leonardo C. Ferreira
    • 3
  • Mayla D. C. Molinari
    • 2
    • 5
  • Silvana R. R. Marin
    • 4
  • Maria C. N. de Oliveira
    • 4
  • José R. B. Farias
    • 4
  • Norman Neumaier
    • 4
  • Liliane M. Mertz-Henning
    • 4
  • Norihito Kanamori
    • 6
  • Kazuo Nakashima
    • 6
  • Hironori Takasaki
    • 7
    • 8
  • Kaoru Urano
    • 7
  • Kazuo Shinozaki
    • 7
  • Kazuko Yamaguchi-Shinozaki
    • 8
  • Janete A. Desidério
    • 1
  • Alexandre L. Nepomuceno
    • 4
  1. 1.Department of Applied Biology to FarmingFCAV-UNESPJaboticabalBrazil
  2. 2.Embrapa Soybean, Rodovia Carlos João Strass, Acesso Orlando Amaral, WartaCoordination for the Improvement of Higher Education Personnel (CAPES)LondrinaBrazil
  3. 3.Embrapa Soybean, Rodovia Carlos João Strass, Acesso Orlando Amaral, WartaNational Council for Scientific and Technological Development (CNPq)LondrinaBrazil
  4. 4.Embrapa Soybean, Rodovia Carlos João Strass, Acesso Orlando Amaral, WartaLondrinaBrazil
  5. 5.Department of General BiologyLondrina State UniversityLondrinaBrazil
  6. 6.Biological Resources and Post-harvest DivisionJapan International Research Center for Agricultural SciencesTsukubaJapan
  7. 7.Gene Discovery Research GroupRIKEN Center for Sustainable Resource ScienceTsukubaJapan
  8. 8.Laboratory of Plant Molecular PhysiologyThe University of TokyoTokyoJapan

Personalised recommendations