Skip to main content
Log in

Construction of a high-density SNP genetic map in flue-cured tobacco based on SLAF-seq

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Tobacco (Nicotiana tabacum L., 2n = 48) is an important agronomic crop and model plant. Flue-cured tobacco is the most important type and accounts for approximately 80 % of tobacco production worldwide. The low genetic diversity of flue-cured tobacco impedes the construction of a high-density genetic linkage map using simple sequence repeat (SSR) markers and warrants the exploitation of single nucleotide polymorphic (SNP) markers from genomic regions. In this article, initially using specific locus-amplified fragment sequencing, we discovered 10,891 SNPs that were subsequently used as molecular markers for genetic map construction. Combined with SSR markers, a final high-density genetic map was generated containing 4215 SNPs and 194 SSRs distributed on 24 linkage groups (LGs). The genetic map was 2662.43 cM in length, with an average distance of 0.60 cM between adjacent markers. Furthermore, by mapping the SNP markers to the ancestral genomes of Nicotiana tomentosiformis and Nicotiana sylvestris, a large number of genome rearrangements were identified as occurring after the polyploidization event. Finally, using this novel integrated map and mapping population, two major quantitative trait loci (QTLs) were identified for flue-curing and mapped to the LG6 of tobacco. This is the first report of SNP markers and a SNP-based linkage map being developed in tobacco. The high-density genetic map and QTLs related to tobacco curing will support gene/QTL fine mapping, genome sequence assembly and molecular breeding in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barchi L, Lanteri S, Portis E, Vale G, Volante A, Pulcini L, Ciriaci T, Acciarri N, Barbierato V, Toppino L, Rotino GL (2012) A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS One 7(8):e43740. doi:10.1371/journal.pone.0043740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P (2007) A microsatellite marker based linkage map of tobacco. Theor Appl Genet 114(2):341–349

    Article  CAS  PubMed  Google Scholar 

  • Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123(2):219–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller L, Martin G (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25:1523–1530

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710. doi:10.1038/nature11650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet. doi:10.1186/1471-2156-3-19

    PubMed  PubMed Central  Google Scholar 

  • Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168(1):241–252. doi:10.1111/j.1469-8137.2005.01480.x

    Article  CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196. doi:10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461. doi:10.1146/annurev.genet.42.110807.091524

    Article  CAS  PubMed  Google Scholar 

  • Gadani F, Hayes A, Opperman CH et al (2003) Large scale genome sequencing and analysis of Nicotiana tabacum: the tobacco genome initiative. In: Proceedings, 5èmes Journées ScientiWques du Tabac de Bergerac—5th bergerac tobacco ScientiWc meeting, Bergerac, pp 117–130. http://www.altadis-bergerac.com/pdf/5_JS_Bergerac.pdf

  • Kim S, Park M, Yeom SI et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46(3):270–278. doi:10.1038/ng.2877

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Li Z, Jakkula L, Hussey RS, Tamulonis JP, Boerma HR (2001) SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. Theor Appl Genet 103(8):1167–1173. doi:10.1007/s001220100672

    Article  CAS  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967. doi:10.1093/bioinformatics/btp336

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82(4):599–606. doi:10.1111/j.1095-8312.2004.00344.x

    Article  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175(4):756–763. doi:10.1111/j.1469-8137.2007.02121.x

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One 9(6):e98855. doi:10.1371/journal.pone.0098855

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu XP, Gui YJ, Xiao BG, Li YP, Tong ZJ, Liu Y, Bai XF, Wu WR, Xia L, Huttner E, Kilian A, Fan LJ (2013) Development of DArT markers for a linkage map of flue-cured tobacco. Chin Sci Bull 58(6):641–648. doi:10.1007/s11434-012-5453-z

    Article  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17(2):240–248. doi:10.1101/Gr.5681207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon HS, Nicholson JS, Heineman A, Lion K, van der Hoeven P, Hayes AJ, Lewis RS (2009a) Changes in genetic diversity of US flue-cured tobacco germplasm over seven decades of cultivar development. Crop Sci 49(2):498–508. doi:10.2135/cropsci2008.05.0253

    Article  Google Scholar 

  • Moon HS, Nifong JM, Nicholson JS, Heineman A, Lion K, van der Hoeven R, Hayes AJ, Lewis RS (2009b) Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci 49(6):2149–2159. doi:10.2135/cropsci2009.01.0024

    Article  CAS  Google Scholar 

  • Ooijen V (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122(8):1467–1480. doi:10.1007/s00122-011-1546-3

    Article  CAS  PubMed  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106(1):28–39. doi:10.1007/s00122-002-0985-2

    CAS  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. doi:10.1371/journal.pone.0032253

    Google Scholar 

  • Potato Genome Sequencing C, Xu X, Pan S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195. doi:10.1038/nature10158

    Article  Google Scholar 

  • Renny-Byfield S, Chester M, Kovarik A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novak P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28(10):2843–2854. doi:10.1093/molbev/msr112

    Article  CAS  PubMed  Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013a) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14(6):R60. doi:10.1186/gb-2013-14-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  • Sierro N, van Oeveren J, van Eijk MJ, Martin F, Stormo KE, Peitsch MC, Ivanov NV (2013b) Whole genome profiling physical map and ancestral annotation of tobacco Hicks Broadleaf. Plant J 75(5):880–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833. doi:10.1038/ncomms4833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XW, Liu DY, Zhang XF et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One. doi:10.1371/journal.pone.0058700

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132(4):1141–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3):411–422. doi:10.1007/s00122-002-1031-0

    CAS  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641. doi:10.1038/nature11119

    Article  Google Scholar 

  • van Os H, Stam P, Visser RGF, van Eck HJ (2005) SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet 112(1):187–194. doi:10.1007/s00122-005-0124-y

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Bennetzen JL (2015) Current status and prospects for the study of Nicotiana genomics, genetics, and nicotine biosynthesis genes. Mol Genet Genomics 290(1):11–21. doi:10.1007/s00438-015-0989-7

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang Z, Li F et al (2012a) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44(10):1098–1103. doi:10.1038/ng.2371

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Fang LC, Xin HP, Wang LJ, Li SH (2012b) Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol 12:148. doi:10.1186/1471-2229-12-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West MA, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, St Clair DA, Michelmore RW (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16(6):787–795. doi:10.1101/gr.5011206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YH, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. doi:10.1371/journal.pgen.1000212

    Google Scholar 

  • Wu FN, Eannetta NT, Xu YM, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120(4):809–827. doi:10.1007/s00122-009-1206-z

    Article  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408. doi:10.1101/gr.144311.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang BC, Xiao BG, Chen XJ, Shi CH (2007) Assessing the genetic diversity of tobacco germplasm using intersimple sequence repeat and inter-retrotransposon amplification polymorphism markers. Ann Appl Biol 150(3):393–401. doi:10.1111/j.1744-7348.2007.00139.x

    Article  CAS  Google Scholar 

  • Zhang HY, Liu XZ, Li TS, Yang YM (2006) Genetic diversity among flue-cured tobacco (Nicotiana tabacum L.) revealed by amplified fragment length polymorphism. Bot Stud 47(3):223–229

    CAS  Google Scholar 

  • Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X (2013) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141. doi:10.1186/1471-2229-13-141

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163(3):1123–1134

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by China National Public Industrial (Agriculture) Specific Project (no. 201203091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhong Xu.

Additional information

Daping Gong and Long Huang contributed equally to this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, D., Huang, L., Xu, X. et al. Construction of a high-density SNP genetic map in flue-cured tobacco based on SLAF-seq. Mol Breeding 36, 100 (2016). https://doi.org/10.1007/s11032-016-0514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0514-7

Keywords

Navigation