Advertisement

Molecular Breeding

, 36:59 | Cite as

Genetic analysis of NEKODE1 gene involved in panicle branching of foxtail millet, Setaria italica (L.) P. Beauv., and mapping by using QTL-seq

  • Hisato Masumoto
  • Hiroki Takagi
  • Yohei Mukainari
  • Ryohei Terauchi
  • Kenji FukunagaEmail author
Article

Abstract

We carried out genetic analysis and mapping of a gene for the tip-branched panicle (Nekode or Neko-ashi in Japanese) in foxtail millet. We revealed that this trait is controlled by a single dominant gene by using two F2 populations and designated the gene as NEKODE1. By using an F2 population between closely related Taiwanese landraces with a new method based on next-generation sequencing (NGS), QTL-seq, we successfully and rapidly mapped the responsible gene (NEKODE1) on chromosome 9. We also mapped the gene by using SSR markers to verify that this gene is located at the position on chromosome 9, suggested by QTL-seq, and we obtained SSR markers closely linked to the gene and found several candidate genes for this trait in a foxtail millet genome sequence database. The use of a foxtail millet genome sequence and NGS enables rapid mapping of a gene(s) by using a segregation population derived from a cross even between closely related foxtail millet landraces.

Keywords

Genome sequence Linkage map QTL-seq Setaria italica SSR (simple sequence repeat) markers Tip-branched panicles 

Notes

Acknowledgments

This work was partly supported by PUH Research Grant Program (advanced research A) of Prefectural University of Hiroshima to KF and Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (JSPS) to KF (No. 25450501).

Supplementary material

11032_2016_481_MOESM1_ESM.xlsx (11 kb)
Supplementary material 1 (XLSX 10 kb)
11032_2016_481_MOESM2_ESM.xlsx (16 kb)
Supplementary material 2 (XLSX 16 kb)

References

  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178CrossRefPubMedGoogle Scholar
  2. Ayyangar GNR, Narayanan TR, Rao TN (1933) The inheritance of characters in Setaria italica (Beauv.), the Italian millet, part IV. Spikelet-tipped bristles. Ind J Agric Sci 3:552–556Google Scholar
  3. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561CrossRefPubMedGoogle Scholar
  4. Cherisey H, Barreneche MT, Jusuf M, Ouin C, Pernes J (1985) Inheritance of some marker genes in Setaria italica (L.) P. Beauv. Theor Appl Genet 71:57–60CrossRefPubMedGoogle Scholar
  5. Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203CrossRefPubMedPubMedCentralGoogle Scholar
  6. Devos KM, Wang ZM, Beales J, Sasaki T, Gale MD (1998) Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet 96:63–68CrossRefGoogle Scholar
  7. Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA 101:9045–9050CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2005) The genetic basis for inflorescence variation between foxtail and green millet (Poaceae). Genetics 169:1659–1672CrossRefPubMedPubMedCentralGoogle Scholar
  9. Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dwivedi S, Upadhyaya H, Senthilvel S, Hash C, Fukunaga K, Diao X, Santra D, Baltensperger D, Prasad M (2011) Millets: genetic and genomic resources. Plant Breed Rev 35:247–375Google Scholar
  11. Fukunaga K, Kawase M, Sakamoto S (1997) Variation of caryopsis length and width among landraces of foxtail millet, Setaria italica (L.) P. Beauv. Jpn J Trop Agric 41:235–240Google Scholar
  12. Hirano R, Naito K, Fukunaga K, Watanabe JN, Ohsawa R, Kawase M (2011) Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome 54:498–506CrossRefPubMedGoogle Scholar
  13. Hoshikawa K (1980) Syokuyo-sakumotu (Food Crops). Yokendo, Tokyo, p 697Google Scholar
  14. Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128:1329–1342CrossRefPubMedGoogle Scholar
  15. Inoue T, Yuo T, Ohta T, Hitomi E, Ichitani K, Kawase M, Taketa S, Fukunaga K (2015) Multiple origins of the phenol reaction negative phenotype in foxtail millet, Setaria italica (L.) P. Beauv, were caused by independent loss-of-function mutations of the polyphenol oxidase (Si7PPO) gene during domestication. Mol Genet Genomics 290:1563–1574CrossRefPubMedGoogle Scholar
  16. Jia X, Zhang Z, Liu Y, Zhang C, Shi Y, Song Y, Wang T, Li Y (2009) Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theor Appl Genet 118:821–829CrossRefPubMedGoogle Scholar
  17. Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961CrossRefPubMedGoogle Scholar
  18. Kawase M (1986) Genetic variation and landrace differentiation of foxtail millet, Setaria italica, in Eurasia. Ph.D. thesis. Kyoto University, JapanGoogle Scholar
  19. Kawase M, Sakamoto S (1987) Geographical distribution of landrace group classified by pollen sterility in foxtail millet [Setaria italica (L.) P. Beauv.]. Jpn J Breed 37:1–9CrossRefGoogle Scholar
  20. Kihara H (1943) Genetic studies in Setaria Beauv. I Seiken Ziho 2:1–3 (in Japanese with English summary) Google Scholar
  21. Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037CrossRefPubMedGoogle Scholar
  22. Li HW, Li CH, Pao WK (1945) Cytological and genetical studies of the interspecific cross of the cultivated foxtail millet, Setaria italica (L.) Beauv., and the green foxtail millet, S. viridis. J Am Soc Agron 37:32–54CrossRefGoogle Scholar
  23. Li Y, Wu S, Cao Y, Zhang X (1996) A phenotypic diversity analysis of foxtail millet (Setaria italica (L.) P. Beauv.) landraces of Chinese origin. Genet Resour Crop Evol 43:377–384CrossRefGoogle Scholar
  24. Li W, Tang S, Zhang S, Shan J, Tang C, Chen Q, Jia G, Han Y, Zhi H, Diao X (2015) Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica (L.) P. Beauv]. Physiol Plant. doi: 10.1111/ppl.12405
  25. Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499CrossRefPubMedGoogle Scholar
  26. Mauro-Herrera M, Wang X, Barbier H, Brutnell TP, Devos KM, Doust AN (2013) Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). G3(3):283–295Google Scholar
  27. Ochiai Y (1996) Variation in tillering and geographical distribution of foxtail millet (Setaria italica P. Beauv.). Breed Sci 46:143–148Google Scholar
  28. Sakamoto S (1979) Characteristics and ethnobotanical comparison of fox-tail millet (Setaria italica P. Beauv.) samples from southern Formosa and the Batan Islands. Bull Natl Mus Ethnol 3:682–708 (in Japanese with English Summary) Google Scholar
  29. Sakamoto S (1987) Origin and dispersal of common millet and foxtail millet. Jpn Agric Res Q 21:84–89Google Scholar
  30. Sakamoto S (1988) Millet Road. Nihon-hosokyokai Syuppan Kyokai (in Japanese)Google Scholar
  31. Sato K, Mukainari Y, Naito K, Fukunaga K (2013) Construction of a foxtail millet linkage map and mapping spikelet-tipped bristles 1(stb1) by using transposon display markers and simple sequence repeat markers with genome sequence information. Mol Breed 31:675–684CrossRefGoogle Scholar
  32. Suresh BV, Muthamilarasan M, Misra G, Prasad M (2013) FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS ONE 8:e71418CrossRefGoogle Scholar
  33. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183CrossRefPubMedGoogle Scholar
  34. Takahashi N (1942) Foxtail millet flower and artificial hybridization. Jpn J Crop Sci 13:337–340 (in Japanese) CrossRefGoogle Scholar
  35. Takei E, Sakamoto S (1987) Geographical variation of heading response to daylength in foxtail millet (Setaria italica P. Beauv.). Jpn J Breed 37:150–158CrossRefGoogle Scholar
  36. Takei E, Sakamoto S (1989) Further analysis of geographical variation of heading response to daylength in foxtail millet (Setaria italica P. Beauv.). Jpn J Breed 39:285–298CrossRefGoogle Scholar
  37. Till-Bottraud I, Brabant P (1990) Inheritance of some Mendelian factors in intra- and interspecific crosses between Setaria italica and Setaria viridis. Theor Appl Genet 80:687–692CrossRefPubMedGoogle Scholar
  38. Van Nguyen F, Pernes J (1985) Genetic diversity of foxtail millet (Setaria italica). In: Jacquard P (ed) Genetic differentiation and dispersal in plants, NATO ASI Series, vol G5. Springer, Berlin, pp 113–128Google Scholar
  39. Wang ZM, Devos KM, Liu CJ, Wang RQ, Gale MD (1998) Construction of RFLP-based maps of foxtail millet, Setalia italica (L.) P. Beauv. Theor Appl Genet 96:31–36CrossRefGoogle Scholar
  40. Xue C, Zhi H, Fang X, Liu X, Tang S, Chai Y, Zhao B, Jia G, Diao X (2016) Characterization and fine mapping of SiDWARF2 (D2) in foxtail millet. Crop Sci 56:95–103CrossRefGoogle Scholar
  41. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hisato Masumoto
    • 1
  • Hiroki Takagi
    • 2
  • Yohei Mukainari
    • 1
  • Ryohei Terauchi
    • 2
  • Kenji Fukunaga
    • 1
    Email author
  1. 1.Faculty of Life and Environmental SciencesPrefectural University of HiroshimaShobaraJapan
  2. 2.Iwate Biotechnology CenterKitakamiJapan

Personalised recommendations