Skip to main content
Log in

Identification of maternal haploids of Nicotiana tabacum aided by transgenic expression of green fluorescent protein: evidence for chromosome elimination in the N. tabacum × N. africana interspecific cross

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The Nicotiana tabacum × N. africana cross is a semilethal cross, where greater than 99 % of progeny die in the cotyledonary stage due to an interspecific lethality reaction. The low frequencies of surviving plants are mixtures of maternal tobacco haploids and aneuploid F1 hybrids. For effective use of surviving haploids in a breeding program, an efficient method is needed to distinguish them from aneuploid hybrids during the seedling stage. The first objective of this research was to investigate the use of N. africana engineered with a green fluorescent protein (gfp) transgene for distinguishing haploids from other surviving plants derived from this cross. Results demonstrated gfp expression to be a useful phenotypic marker for separation of aneuploid hybrids at the seedling stage. Microsatellite marker genotyping, flow cytometry determinations, and chromosome counts resulted in identification of progeny that exhibited intermediate DNA amounts and variable chromosome numbers donated by the N. africana parent. Three individuals with near-haploid DNA content were identified that carried N. africana markers and n = 24 + 2 or n = 24 + 3 chromosomes. The results present evidence of genetic instability in progeny from the N. tabacum × N. africana cross and suggest that, in contrast to previous belief, chromosome elimination may play at least a partial role in the generation of haploids from this cross. Additionally, microsatellite marker genotyping demonstrated a role for a gene or genes located near the end of N. tabacum chromosome H (linkage group 11) in the interspecific lethality reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi T (2001) Introduction and concept of breeding barriers. In: Adachi T, Imanishi S, Hoffmann F (eds) How to overcome breeding barriers by means of plant biotechnology: a case study in tomato. Osaka Municipal Universities Press, Osaka, pp 1–4

    Google Scholar 

  • An G, Watson BD, Cheng CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 891:301–305

    Article  Google Scholar 

  • Andres RJ, Kuraparthy V (2013) Development of an improved method of mitotic metaphase chromosome preparation compatible for fluorescence in situ hybridization in cotton. J Cotton Sci 17:149–156

    CAS  Google Scholar 

  • Bennett MD, Finch RA, Barclay IR (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175–200

    Article  Google Scholar 

  • Bindler G, Pileske J, Bakaher N, Gunduz I, Ivanov N, van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 23:219–230

    Article  Google Scholar 

  • Bourgin J-P, Nitsch JP (1967) Production of haploid Nicotiana from excised stamens. Ann Physiol Veg 9:377–382

    Google Scholar 

  • Burk LG (1962) Haploids in genetically marked progenies of tobacco. J Hered 53:222–225

    Google Scholar 

  • Burk LG, Gerstel DU, Wernsman EA (1979) Maternal haploids of Nicotiana tabacum L. from seed. Science 206:585

    Article  CAS  PubMed  Google Scholar 

  • Burns JA (1964) A technique for making preparations of mitotic chromosomes from Nicotiana flowers. Tob Sci 8:1–2

    CAS  Google Scholar 

  • Chen CX, Zhu LH, Sun JS (1998) Molecular evidence on maize specific DNA fragment transferred into wheat through sexual hybridization. Sci China Ser C-Life Sci 41:126–132

    Article  CAS  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Clausen RE, Cameron DR (1944) Inheritance in Nicotiana tabacum. XVIII. Monosomic analysis. Genetics 29:447–477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    Article  CAS  PubMed  Google Scholar 

  • Davies DR (1974) Chromosome elimination in inter-specific hybrids. J Hered 32:267–270

    Article  Google Scholar 

  • de Nettancourt D, Stokes GW (1960) Haploidy in tobacco. J Hered 51:102–104

    Google Scholar 

  • Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88:386–393

    Article  Google Scholar 

  • Flowers RA, Stokes GW, Smiley JH (1967) Identification of tobacco haploids by stomatal size. Tob Sci 11:72–74

    Google Scholar 

  • Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Brüß C, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gernand D, Rutten T, Pickering R, Houben A (2006) Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatization. Cytogenet Genome Res 114:169–174

    Article  CAS  PubMed  Google Scholar 

  • Gerstel DU (1945) Inheritance in Nicotiana tabacum. XIX. Identification of the tabacum chromosome replaced by one from N. glutinosa in mosaic-resistant Holmes Samsoun tobacco. Genetics 30:448–454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gerstel DU, Burk LG (1960) Controlled introgression in Nicotiana: a cytological study. Tob Sci 4:147–150

    Google Scholar 

  • Gerstel DU, Burns JA, Burk LG (1979) Interspecific hybridizations with an African tobacco, Nicotiana africana Merxm. J Hered 70:342–344

    Google Scholar 

  • Gupta SB (1969) Duration of mitotic cycle and regulation of DNA replication in Nicotiana plumbaginifolia and a hybrid derivative of N. tabacum showing chromosome instability. Can J Genet Cytol 11:133–142

    Article  Google Scholar 

  • Haseloff J, Siemering KR, Prasher D, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishii T, Ueda T, Tanaka H, Tsujimoto H (2010) Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res 18:821–831

    Article  CAS  PubMed  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Kim NS, Armstrong KC, Fedak G, Ho K, Park NI (2002) A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants. Genome 45:165–174

    Article  CAS  PubMed  Google Scholar 

  • Kramer MG, Reed SM (1988) An evaluation of maternal nullihaploidy for Nicotiana tabacum L. nullisomic production. I. An interspecific hybridization approach. J Hered 79:24–27

    Google Scholar 

  • Kynast RG, Riera-Lizarazu O, Vales MI, Okagaki RJ, Maquieira SB, Chen G, Ananiev EV, Odland WE, Russell CD, Stec AO, Livingston SM, Zaia HA, Rines HW, Philips RL (2001) A complete set of maize individual chromosome additions to the oat genome. Plant Physiol 125:1216–1227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laurie DA, Bennett MD (1989) The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32:953–961

    Article  Google Scholar 

  • Lewis RS (2003) Unpublished information. North Carolina State University

  • Lewis RS, Rose C (2011) Identification of tobacco haploids on the basis of transgenic overexpression of PAP1 from Arabidopsis thaliana. Crop Sci 51:1491–1497

    Article  Google Scholar 

  • RS, Milla SR, Levin JS (2005) Molecular and genetic characterization of Nicotiana glutinosa L. chromosome segments in tobacco mosaic virus-resistant tobacco accessions. Crop Sci 45:2355–2362

    Article  CAS  Google Scholar 

  • Li L, Xu X, Jin W, Chen S (2009) Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta 230:367–376

    Article  CAS  PubMed  Google Scholar 

  • Linde-Laursen I, von Bothmer R (1999) Orderly arrangement of the chromosomes within barley genomes of chromosome-eliminating Hordeum lechleri × barley hybrids. Genome 42:225–236

    Article  Google Scholar 

  • Lucas GB, Gooding GV Jr, Sasser JN, Gerstel DU (1980) Reaction of Nicotiana africana to black shank, Granville wilt, root knot, tobacco mosaic virus, and potato virus Y. Tob Sci 24:141–142

    Google Scholar 

  • Michel B (2000) Replication fork arrest and DNA recombination. Trends Biochem Sci 25:173–178

    Article  CAS  PubMed  Google Scholar 

  • Mino M, Maekawa K, Ogawa K, Yamagishi H, Inoue M (2002) Cell death processes during expression of hybrid lethality in interspecific F1 hybrid between Nicotiana gossei Domin and Nicotiana tabacum. Plant Physiol 130:1776–1787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mochida K, Tsujimoto H, Sasakuma T (2004) Confocal analysis of chromosome behavior in wheat × maize zygotes. Genome 47:199–205

    Article  PubMed  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  • Pelletier G, Ferault M, Goujaud J, Vedel F, Caboche M (1987) The use of rootless mutants for the screening of spontaneous androgenetic and gynogenetic haploids in Nicotiana tabacum: evidence for the direct transfer of cytoplasm. Theor Appl Genet 75:13–15

    Article  Google Scholar 

  • Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  • Reed SM (1993) Use of stomatal size to distinguish between haploid and dihaploid tobacco plants. Tob Sci 37:84–86

    Google Scholar 

  • Riera Lizarazu O, Rines HW, Phillips RL (1996) Cytological and molecular characterization of oat × maize partial hybrids. Theor Appl Genet 93:123–135

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:498–505

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher Robinson T, Finch RA, Smith JB, Bennett MD (1987) Genotypic control of centromere positions of parental genomes in Hordeum × Secale hybrid metaphases. J Cell Sci 87:291–304

    Google Scholar 

  • Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Stines BJ, Mann TG (1960) Diploidization in Nicotiana tabacum: a study of the yellow burley character. J Hered 51:222–227

    Google Scholar 

  • Subrahmanyam NC, Kasha KJ (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42:111–125

    Article  Google Scholar 

  • Tezuka T (2012) Hybrid lethality in the genus Nicotiana. In: Mworia JK (ed) Botany. InTech, Rijeka, pp 191–210

    Google Scholar 

  • Tezuka T, Matsuo C, Lizuka T, Oda M, Marubashi W (2012) Identification of Nicotiana tabacum linkage group corresponding to the Q chromosome gene(s) involved in hybrid lethality. PLoS One 7:e37822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  • Wernsman EA (1992) Varied roles for the haploid sporophyte in plant improvement. In: Stalker HT, Murphy JP (eds) Plant breeding in the 1990s. CAB Int, Wallingforde, pp 461–481

    Google Scholar 

  • Wernsman EA, Matzinger DF, Rufty RC (1989) Androgenetic vs. gynogenetic doubled haploids of tobacco. Crop Sci 29:1151–1155

    Article  Google Scholar 

  • Wilkinson MJ, Bennett ST, Clulow SA, Allainguillaume J, Harding K, Bennett MD (1995) Evidence for somatic translocation during potato dihaploid induction. Heredity 74:146–151

    Article  PubMed  Google Scholar 

  • Wu F, Eanetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2009) COSII genetics maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827

    Article  PubMed  Google Scholar 

  • Zhang ZL, Qiu FZ, Liu YZ, Ma KJ, Li ZY, Zu SZ (2008) Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line of maize (Zea mays L.). Plant Cell Rep 27:1851–1860

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Xu X, Xie H, Chen S, Jin W (2013) Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol 163:721–731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the laboratory of Dr. George Allen at N.C. State University for providing us with the 35S:mgfp5-ER construct. We also gratefully acknowledge the financial support of our research program by Philip Morris International and Altria Client Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsey S. Lewis.

Ethics declarations

Author contributions

WGH performed the research, helped to analyze the data, and helped draft the manuscript; VK conducted cytological analyses; SPK performed plant transformations; RSL designed the research, helped analyze the data, and wrote the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hancock, W.G., Kuraparthy, V., Kernodle, S.P. et al. Identification of maternal haploids of Nicotiana tabacum aided by transgenic expression of green fluorescent protein: evidence for chromosome elimination in the N. tabacum × N. africana interspecific cross. Mol Breeding 35, 179 (2015). https://doi.org/10.1007/s11032-015-0372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0372-8

Keywords

Navigation