Advertisement

Molecular Breeding

, 35:166 | Cite as

QTL mapping of pomological traits in peach and related species breeding germplasm

  • Jonathan Fresnedo-Ramírez
  • Marco C. A. M. Bink
  • Eric van de Weg
  • Thomas R. Famula
  • Carlos H. Crisosto
  • Terrence J. Frett
  • Ksenija Gasic
  • Cameron P. Peace
  • Thomas M. GradzielEmail author
Article

Abstract

Peach is an economically important fruit tree crop that exhibits high phenotypic variability yet suffers from diversity-limited gene pool. Genetic introgression of novel alleles from related species is being pursued to expand genetic diversity. This process is, however, challenging and requires the incorporation of innovative genomic and statistical tools to facilitate efficient transfer of these exotic alleles across the multiple generations required for introgression. In this study, pedigree-based analysis (PBA) in a Bayesian QTL mapping framework was applied to a diverse peach pedigree introgressed with almond and other related Prunus species. The aim was to investigate the genetic control of eight commercially important fruit productivity and fruit quality traits over two subsequent years. Fifty-two QTLs with at least positive evidence explaining up to 98 % of the phenotypic variance across all trait/year combinations were mapped separately per trait and year. Several QTLs exhibited variable association with traits between years. By using the peach genome sequence as a reference, the intrachromosomal positions for several QTLs were shown to differ from those previously reported in peach. The inclusion of introgressed germplasm and the explicit declaration of the genetic structure of the pedigree as covariate in PBA enhanced the mapping and interpretation of QTLs. This study serves as a model study for PBA in a diverse peach breeding program, and the results highlight the ability of this strategy to identify genomic resources for direct utilization in marker-assisted breeding.

Keywords

Prunus persica (L.) Batsch Germplasm introgression Bayesian SNPs Pedigree correction Genetic structure 

Notes

Acknowledgments

This study was funded by USDA’s National Institute of Food and Agriculture—Specialty Crop Research Initiative project, ‘RosBREED: Enabling marker-assisted breeding in Rosaceae’ (2009-51181-05808). Jonathan Fresnedo Ramírez was supported by a CONACYT-UCMEXUS (Mexican Council of Science and Technology and University of California Institute for Mexico and the United States) Doctoral fellowship at the University of California, Davis. The contributions of M.C.A.M. Bink & E.W. van de Weg were also supported by the EU-FruitBreedomics project funded by the Commission of the European Communities (Contract FP7-KBBE-2010-265582). Thanks to Dr. Pedro J. Martínez-García for his helpful comments about the organization of the manuscript. Special thanks for their valuable help during the phenotyping of the accessions to the field crew of the Processing Peach Breeding Program at UC Davis, supervised by Mary Ann Thorpe, Sabrina Marchand, Helen Chan and Rachel Williams. Likewise, thanks to Palma Lower, writing specialist at UC Davis, for her valuable comments and corrections during early drafts of the manuscript.

Data archiving

The genotypic and phenotypic datasets of the UC Davis pedigree-connected germplasm can be accessed through the Breeders Toolbox available at the Genome Database for Rosaceae (http://www.rosaceae.org/breeders_toolbox). The QTL information is accessible through the Trait Loci search tool at GDR. (http://www.rosaceae.org/search/qtl).

Authors’ contributions

J.F.R. carried out the analyzes and drafted the manuscript, M.C.A.M.B. and E.V.W. provided support for implementation and performing of PBA as well as for the interpretation of the results, also helped in drafting the manuscript, T.R.F. helped to perform pedigree pruning and determination of genetic structure, C.H.C. provided support for phenotypic evaluation and analyzes, T.J.F., K.G. and C.P.P. developed the SNP genotyping and database for the peach set in RosBREED and helped in drafting the manuscript, and T.M.G. provided the genetic materials, coordinated the study and elaborated on manuscripts. All authors read and approved the final and reviewed manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11032_2015_357_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4410 kb)
11032_2015_357_MOESM2_ESM.docx (281 kb)
Supplementary material 2 (DOCX 281 kb)
11032_2015_357_MOESM3_ESM.docx (12 kb)
Supplementary material 3 (DOCX 11 kb)

References

  1. Abascal E, García Lautre I, Landaluce MI (2006) Multiple factor analysis of mixed tables of metric and categorical data. In: Multiple correspondence analysis and related methods. Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences. Chapman and Hall/CRC, pp 351–367. doi: 10.1201/9781420011319.ch15
  2. Aranzana MJ, Abbassi EK, Howad W, Arus P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69. doi: 10.1186/1471-2156-11-69 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Aranzana MJ, Illa E, Howad W, Arús P (2012) A first insight into peach [Prunus persica (L.) Batsch] SNP variability. Tree Genet Genomes 8(6):1359–1369. doi: 10.1007/s11295-012-0523-6 CrossRefGoogle Scholar
  4. Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2010) Synteny in the Rosaceae. In: Plant breeding reviews. Wiley, New York, pp 175–211. doi: 10.1002/9780470650349.ch4
  5. Bink MCAM, Boer MP, Braak CJF, Jansen J, Voorrips RE, van de Weg WE (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161(1/2):85–96CrossRefGoogle Scholar
  6. Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, Kouassi AB, Laurens F, Mathis F, Gessler C, Gobbin D, Rezzonico F, Patocchi A, Kellerhals M, Boudichevskaia A, Dunemann F, Peil A, Nowicka A, Lata B, Stankiewicz-Kosyl M, Jeziorek K, Pitera E, Soska A, Tomala K, Evans KM, Fernández-Fernández F, Guerra W, Korbin M, Keller S, Lewandowski M, Plocharski W, Rutkowski K, Zurawicz E, Costa F, Sansavini S, Tartarini S, Komjanc M, Mott D, Antofie A, Lateur M, Rondia A, Gianfranceschi L, van de Weg WE (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127(5):1073–1090. doi: 10.1007/s00122-014-2281-3 PubMedGoogle Scholar
  7. Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biol 9 (Artn 59)Google Scholar
  8. Bulmer MG (1980) The mathematical theory of quantitative genetics. Oxford University Press, OxfordGoogle Scholar
  9. Calboli FCF, Sampson J, Fretwell N, Balding DJ (2008) Population structure and inbreeding from pedigree analysis of purebred dogs. Genetics 179(1):593–601. doi: 10.1534/Genetics.107.084954 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cannings C, Sheehan NA (2002) On a misconception about irreducibility of the single-site gibbs sampler in a pedigree application. Genetics 162(2):993–996PubMedCentralPubMedGoogle Scholar
  11. Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes 8(5):975–990. doi: 10.1007/s11295-012-0477-8 CrossRefGoogle Scholar
  12. Charlesworth D, Charlesworth B (1979) The evolutionary genetics of sexual systems in flowering plants. Proc R Soc Lond B Biol Sci 205(1161):513–530CrossRefPubMedGoogle Scholar
  13. Coster A (2012) pedigree: pedigree functions, 1.4 edn. http://CRAN.R-project.org/package=pedigree
  14. De Franceschi P, Stegmeir T, Cabrera A, van der Knaap E, Rosyara UR, Sebolt AM, Dondini L, Dirlewanger E, Quero-Garcia J, Campoy JA, Iezzoni AF (2013) Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Mol Breed 32(2):311–326. doi: 10.1007/S11032-013-9872-6 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7(2):323–335. doi: 10.1007/S11295-010-0334-6 CrossRefGoogle Scholar
  16. Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105(1):145–159. doi: 10.1007/S00122-001-0841-9 CrossRefPubMedGoogle Scholar
  17. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, HarlowGoogle Scholar
  18. Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185(4):917–930. doi: 10.1111/J.1469-8137.2009.03119.X CrossRefPubMedGoogle Scholar
  19. Fernández i Martí A, Font I Forcada C, R Socias I Company (2013) Genetic analysis for physical nut traits in almond. Tree Genet Genomes 9(2):455–465. doi: 10.1007/S11295-012-0566-8 CrossRefGoogle Scholar
  20. Flint-Garcia SA (2013) Genetics and consequences of crop domestication. J Agric Food Chem 61(35):8267–8276. doi: 10.1021/jf305511d CrossRefPubMedGoogle Scholar
  21. Font i Forcada C, Oraguzie N, Igartua E, Moreno MÁ, Gogorcena Y (2012) Population structure and marker–trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes 9(2):331–349. doi: 10.1007/s11295-012-0553-0 CrossRefGoogle Scholar
  22. Frett TJ, Gasic K, Clark JR, Byrne D, Gradziel T, Crisosto C (2012) Standardized phenotyping for fruit quality in peach [Prunus persica (L.) Batsch]. J Am Pomol Soc 66(4):214–219Google Scholar
  23. Gradziel TM (2002) Almond species as sources of new genes for peach improvement. Acta Hortic 592:81–88Google Scholar
  24. Gradziel TM (2003) Interspecific hybridizations and subsequent gene introgression within Prunus subgenus Amygdalus. Acta Hortic 622:249–255Google Scholar
  25. Gradziel TM, Weinbaum SA (1999) High relative humidity reduces anther dehiscence in apricot, peach, and almond. HortScience 34(2):322–325Google Scholar
  26. Gradziel TM, Beres W, Pelletreau K (1993) Inbreeding in California canning clingstone peach cultivars. Fruit Var J 47(3):160–168Google Scholar
  27. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4):711–732. doi: 10.1093/Biomet/82.4.711 CrossRefGoogle Scholar
  28. Guan Y, Peace C, Rudell D, Verma S, Evans K (2015) QTLs detected for individual sugars and soluble solids content in apple. Mol Breeding 35(6):1–13. doi: 10.1007/s11032-015-0334-1 CrossRefGoogle Scholar
  29. Guo M, Simmons R (2011) Cell number counts—the fw2.2 and CNR genes and implications for controlling plant fruit and organ size. Plant Sci 181(1):1–7. doi: 10.1016/J.Plantsci.03.010 CrossRefPubMedGoogle Scholar
  30. Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinf 12:186. doi: 10.1186/1471-2105-12-186 CrossRefGoogle Scholar
  31. Iezzoni A (2010) RosBREED: enabling marker-assisted breeding in the Rosaceae. HortScience 45(8):S27–S28Google Scholar
  32. Iezzoni A, Weebadde C, Luby J, Yue CY, van de Weg WE, Fazio G, Main D, Peace CP, Bassil NV, McFerson J (2010) RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Horticulturae 859:389–394Google Scholar
  33. Jannink JL, Bink MCAM, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6(8):337–342CrossRefPubMedGoogle Scholar
  34. Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36(suppl 1):D1034–D1040. doi: 10.1093/nar/gkm803 PubMedCentralPubMedGoogle Scholar
  35. Jung S, Ficklin SP, Lee T, Cheng C-H, Blenda A, Zheng P, Yu J, Bombarely A, Cho I, Ru S, Evans K, Peace C, Abbott AG, Mueller LA, Olmstead MA, Main D (2014) The genome database for Rosaceae (GDR): year 10 update. Nucleic Acids Res 42(D1):D1237–D1244. doi: 10.1093/nar/gkt1012 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795. doi: 10.2307/2291091 CrossRefGoogle Scholar
  37. Le S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):1–18Google Scholar
  38. Lee SH, Van der Werf JHJ (2005) The role of pedigree information in combined linkage disequilibrium and linkage mapping of quantitative trait loci in a general complex pedigree. Genetics 169(1):455–466. doi: 10.1534/genetics.104.033233 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Martinez-Gomez P, Arulsekar S, Potter D, Gradziel TM (2003) An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131(3):313–322. doi: 10.1023/A:1024028518263 CrossRefGoogle Scholar
  40. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedCentralPubMedGoogle Scholar
  41. Okie WR, Bacon T, Bassi D (2008) Fresh market cultivar development. In: Layne D, Bassi D (eds) The peach: botany, production and uses. CABI, Wallinford, pp 37–60Google Scholar
  42. Olukolu BA, Kole C (2012) Molecular mapping of complex traits. In: Kole C, Abbott AG (eds) Genetics, genomics and breeding of crop plants. CRC Press, Boca Raton, pp 126–157Google Scholar
  43. Peace C, Bassil NV, Bink M, Brown SK, Byrne DH, Clark JR, Davis TM, Evans K, Fazio G, Finn CE, Gasic K, Gradziel T, Hancock JF, Luby J, Main D, Oraguzie N, van de Weg E, Wang DC, Xu KN, Iezzoni A (2010) RosBREED’s marker-assisted breeding Pipeline. HortScience 45(8):S54–S54Google Scholar
  44. Peace CP, Luby JJ, van de Weg WE, Bink MCAM, Iezzoni AF (2014) A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Genet Genomes 10(6):1679–1694. doi: 10.1007/s11295-014-0788-z CrossRefGoogle Scholar
  45. Pirona R, Eduardo I, Pacheco I, Linge CD, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13 (Artn 166)Google Scholar
  46. Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109(4):884–897. doi: 10.1007/S00122-004-1703-Z CrossRefPubMedGoogle Scholar
  47. R Development Core Team (2012) R: a language and environment for statistical computing, 2.15th edn. Development Core Team R, ViennaGoogle Scholar
  48. Riester M, Stadler PF, Klemm K (2009) FRANz: reconstruction of wild multi-generation pedigrees. Bioinformatics 25(16):2134–2139. doi: 10.1093/Bioinformatics/Btp064 PubMedCentralCrossRefPubMedGoogle Scholar
  49. Rosyara UR, Bink MCAM, van de Weg E, Zhang GR, Wang DC, Sebolt A, Dirlewanger E, Quero-Garcia J, Schuster M, Iezzoni AF (2013) Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol Breed 32(4):875–887. doi: 10.1007/S11032-013-9916-Y CrossRefGoogle Scholar
  50. Sánchez-Pérez R, Dicenta F, Martinez-Gomez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8(2):379–389. doi: 10.1007/S11295-011-0448-5 CrossRefGoogle Scholar
  51. Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hortic Sci 110(4):547–552Google Scholar
  52. Sillanpää MJ, Arjas E (1999) Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 151:1605–1619PubMedCentralPubMedGoogle Scholar
  53. Sorensen D, Gianola D (2002) Likelihood, Bayesian and MCMC methods in quantitative genetics. Statistics for biology and health. Springer, New YorkGoogle Scholar
  54. Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189. doi: 10.1105/Tpc.018119 PubMedCentralCrossRefPubMedGoogle Scholar
  55. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132(4):1141–1160PubMedCentralPubMedGoogle Scholar
  56. van de Weg WE, Voorrips RE, Finkers HJ, Kodde LP, Meulenbroek EJ, Jansen J, Bink MCAM (2005) Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining by exploiting breeding material. Acta Hortic 708:483–488Google Scholar
  57. Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arus P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PlosOne 7(4) (ARTN e35668). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035668
  58. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi: 10.1093/jhered/93.1.77 CrossRefPubMedGoogle Scholar
  59. Voorrips RE, Bink MCAM, van de Weg WE (2012) Pedimap: software for the visualization of genetic and phenotypic data in pedigrees. J Hered 103(6):903–907. doi: 10.1093/Jhered/Ess060 PubMedCentralCrossRefPubMedGoogle Scholar
  60. Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51(4):271–278. doi: 10.1270/jsbbs.51.271 CrossRefGoogle Scholar
  61. Zeinalabedini M, Sohrabi S, Nikoumanesh K, Imani A, Mardi M (2012) Phenotypic and molecular variability and genetic structure of Iranian almond cultivars. Plant Syst Evol 298(10):1917–1929. doi: 10.1007/S00606-012-0691-8 CrossRefGoogle Scholar
  62. Zhang GR, Sebolt AM, Sooriyapathirana SS, Wang DC, Bink MCAM, Olmstead JW, Iezzoni AF (2010) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6(1):25–36. doi: 10.1007/s11295-009-0225-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jonathan Fresnedo-Ramírez
    • 1
    • 7
  • Marco C. A. M. Bink
    • 2
  • Eric van de Weg
    • 3
  • Thomas R. Famula
    • 4
  • Carlos H. Crisosto
    • 1
  • Terrence J. Frett
    • 5
    • 8
  • Ksenija Gasic
    • 5
  • Cameron P. Peace
    • 6
  • Thomas M. Gradziel
    • 1
    Email author
  1. 1.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  2. 2.BiometrisWageningen University and Research CentreWageningenThe Netherlands
  3. 3.Wageningen UR Plant BreedingWageningen University and Research CentreWageningenThe Netherlands
  4. 4.Department of Animal ScienceUniversity of CaliforniaDavisUSA
  5. 5.Department of Agricultural and Environmental SciencesClemson UniversityClemsonUSA
  6. 6.Department of HorticultureWashington State UniversityPullmanUSA
  7. 7.BRC Bioinformatics Facility, Institute of BiotechnologyCornell UniversityIthacaUSA
  8. 8.Horticulture DepartmentUniversity of ArkansasFayettevilleUSA

Personalised recommendations