Molecular Breeding

, 35:135 | Cite as

QTLs detected for individual sugars and soluble solids content in apple

  • Yingzhu Guan
  • Cameron Peace
  • David Rudell
  • Sujeet Verma
  • Kate EvansEmail author


Sweetness is one of the most important fruit quality traits in breeding programs, determining the overall quality and flavor perception of apples. Selecting for this trait using conventional breeding methods is challenging due to the complexity of its genetic control. In order to improve the efficiency of trait selection via DNA-based markers, extensive studies focused on the detection of quantitative trait loci (QTL) and the development of DNA-based markers associated with QTL regions for traits of interest. Newly discovered QTLs detected in multiple apple breeding populations are presented here for individual sugars (fructose, glucose, sucrose, and sorbitol) and soluble solids content (SSC) at harvest, after 10, and 20 weeks of refrigerated storage followed by 1 week at room temperature in two successive years. A total of 1416 polymorphic SNPs were filtered from the RosBreed Apple SNP Infinium® array for QTL analysis using FlexQTL™ software. QTLs for individual sugars were identified on linkage groups (LG) 1, 2, 3, 4, 5, 9, 11, 12, 13, 15, and 16, and QTLs for SSC were found on LGs 2, 3, 12, 13, and 15. One QTL region on LG 1 was consistently identified for both fructose and sucrose from harvest through storage in both years, which accounted for 34–67 and 13–41 % of total phenotypic variation, respectively. These stable QTLs with high explained phenotypic variation on LG 1 for fructose content indicate a promising genomic region for DNA-based marker development to enable marker-assisted breeding for sweetness selection in apple breeding programs.


Fruit quality Marker-assisted breeding RosBREED SNP Soluble solids content 



This work was partially funded by USDA’s National Institute of Food and Agriculture—Specialty Crop Research Initiative project, ‘RosBREED: enabling marker-assisted breeding in Rosaceae’ (2009-51181-05808). We thank Nancy Buchanan, Julia Harshman, Lisa Brutcher, and Bonnie Konishi for assistance in phenotyping, Dave Buchanan for his skillful experience on GC–MS, Jerry Tangren for his assistance with statistical analysis of phenotypic data, Umesh Rosyara for his assistance in QTL analysis, Marco Bink and Eric van de Weg for training in Pedigree-Based Analysis concepts and software.


  1. Ackermann J, Fischer M, Amado R (1992) Changes in sugars, acids, and amino acids during ripening and storage of apples (Cv. Glockenapfel). J Agric Food Chem 40:1131–1134CrossRefGoogle Scholar
  2. Alspach PA, Oraguzie NC (2002) Estimation of genetic parameters of apple (Malus × domestica) fruit quality from open-pollinated families. N Z J Crop Hortic Sci 30:219–228CrossRefGoogle Scholar
  3. Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287:663–678PubMedCrossRefGoogle Scholar
  4. Berüter J (1985) Sugar accumulation and changes in the activities of related enzymes during development of the apple fruit. J Plant Physiol 121:331–341CrossRefGoogle Scholar
  5. Berüter J (2004) Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. Plant Physiol 161:1011–1029CrossRefGoogle Scholar
  6. Bink MCAM, Anderson AD, van de Weg WE, Thompson EA (2008) Comparison of marker-based pairwise relatedness estimators on a pedigreed plant population. Theor Appl Genet 117:843–855PubMedCrossRefGoogle Scholar
  7. Bink MCAM, Totir LR, Ter Braak CJ, Winkler CR, Boer MP, Smith OS (2012) QTL linkage analysis of connected populations using ancestral marker and pedigree information. Theor Appl Genet 124:1097–1113PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel C-E, Kouassi AB, Laurens L, Mathis F, Gessler C, Gobbin D, Rezzonico F, Patocchi A et al (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127:1073–1090PubMedGoogle Scholar
  9. Blanpied GD, Silsby KJ (1992) Predicting harvest date windows for apples. Cornell Cooper Ext 221:1–12Google Scholar
  10. Brown AG, Harvey DM (1971) The nature and inheritance of sweetness and acidity in the cultivated apple. Euphytica 20:68–80CrossRefGoogle Scholar
  11. Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosomal regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098PubMedCrossRefGoogle Scholar
  12. Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler L, van de Weg E, Gardiner SE, Bassil N, Peace C (2012a) Genome-wide SNP detection, validation, and development of an 8 K SNP array for apple. PLoS ONE 7:e31745PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012b) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12.
  14. Chaïb J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112(5):934–944PubMedCrossRefGoogle Scholar
  15. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31CrossRefGoogle Scholar
  16. Dreesen R, Davey M, Peeters K, Van der Veken N, Keulemans J (2012) Development and mapping of molecular markers for candidate genes involved in apple fruit texture. Acta Hortic 934:829–835Google Scholar
  17. Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009a) QTL mapping of aroma compounds analyzed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breed 23:501–521CrossRefGoogle Scholar
  18. Dunemann F, Boudichevskaia A, Grafe C, Weber WE, Ulrich D (2009b) QTL and candidate gene mapping for aroma compounds in the apple progeny ‘Discovery’ × ‘Prima’. Acta Hortic 839:433–440Google Scholar
  19. Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204CrossRefGoogle Scholar
  20. Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159PubMedCrossRefGoogle Scholar
  21. Evans K (2013) Apple breeding in the Pacific Northwest. Acta Hortic 976:75–78Google Scholar
  22. Evans KM, James CM (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106:1178–1183PubMedGoogle Scholar
  23. Evans K, Guan Y, Luby J, Clark M, Schmitz C, Brown S, Orcheski B, Peace C, van de Weg E, Iezzoni A (2012) Large-scale standardized phenotyping of apple in RosBREED. Acta Hortic 945:233–238Google Scholar
  24. Feng F, Li M, Ma F, Cheng L (2014) Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus × domestica) cultivars. Hortic Res 1:14019. doi: 10.1038/hortres.2014.19 CrossRefGoogle Scholar
  25. Fischer C (1994) Shortening the juvenile period in apple breeding. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Kluwer Academic Publishers, Dordrecht, pp 162–164Google Scholar
  26. Fuleki T, Pelayo E, Palabay RB (1994) Sugar composition of varietal juices produced from fresh and stored apples. J Agric Food Chem 42:1266–1275CrossRefGoogle Scholar
  27. Harker FR, Gunson FA, Jaeger SR (2003) The case for fruit quality: an interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol Technol 28:333–347CrossRefGoogle Scholar
  28. Harker FR, Kupfeman EM, Marin AB, Gunson FA, Triggs CM (2008) Eating quality standards for apple based on consumer preferences. Postharvest Biol Technol 50:70–78CrossRefGoogle Scholar
  29. Iezzoni A, Weebadde C, Luby J, Yue CY, Peace CP, Bassil N, McFerson J (2010) RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Hortic 859:389–394Google Scholar
  30. Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding: volume I. tree and tropical fruits. Wiley, New Jersey, pp 1–77Google Scholar
  31. Janick J, Scofield S, Goldschmidt EE (2009) A history of grafting. Hortic Rev 35:437–493Google Scholar
  32. Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM, Arus P, Shulaev V, Verde I, Morgante M, Rokhsar DS, Velasco R, Sargent DJ (2012) Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genom 13:129. doi: 10.1186/1471-2164-13-129 CrossRefGoogle Scholar
  33. Kader AA (2008) Flavor quality of fruits and vegetables. J Sci Food Agric 88:1863–1868CrossRefGoogle Scholar
  34. Kampstra P (2008) Beanplot: a boxplot for alternative for visual comparison of distributions. J Stat Softw 28:1–9Google Scholar
  35. Kenis K, Keulemans J, Davey M (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661CrossRefGoogle Scholar
  36. King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084CrossRefGoogle Scholar
  37. Klages K, Donnison H, Wünsche J, Boldingh H (2001) Diurnal changes in non-structural carbohydrates in leaves, phloem exudate and fruit in ‘Braeburn’ apple. Aust J Plant Physiol 28:131–139Google Scholar
  38. Kromdijk J, Bertin N, Heuvelink E, Molenaar J, de Visser PHB, Marcelis LFM, Struik PC (2014) Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load × QTL interactions. J Exp Bot 65:11–22PubMedCrossRefGoogle Scholar
  39. Lerceteau-Köhler E, Moing A, Guérin G, Renaud C, Maucourt M, Rolin D (2006) QTL analysis for sugars and organic acids in strawberry fruits. Acta Hortic 708:573–577Google Scholar
  40. Lerceteau-Köhler E, Moing A, Guérin G, Renaud C, Petit A, Rothan C, Denoyes B (2012) Genetic dissection of fruit quality traits in the octoploid strawberry highlights the role of homoeo-QTL in their control. Theor Appl Genet 124:1059–1077PubMedCentralPubMedCrossRefGoogle Scholar
  41. Li M, Feng F, Cheng L (2012) Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE 7(3):e33055PubMedCentralPubMedCrossRefGoogle Scholar
  42. Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526PubMedCrossRefGoogle Scholar
  43. Longhi S, Moretto M, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.). J Exp Bot 63(3):1107–1121PubMedCrossRefGoogle Scholar
  44. Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Costa F (2013) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus × domestica Borkh). BMC Plant Biol 13:37
  45. Maliepaard C, Alston F, van Arkel G, Brown LM et al (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  46. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowith HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127(1):181–197PubMedCentralPubMedGoogle Scholar
  47. Paterson AH, Lin YR, Ki Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718PubMedCrossRefGoogle Scholar
  48. Peace CP, Luby J, van de Weg E, Bink M, Iezzoni AF (2014) A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach and sweet cherry. Tree Genet Genomes 10:1679–1694CrossRefGoogle Scholar
  49. Potts SM, Khan MA, Han Y, Kushad MM, Korban SS (2014) Identification of quantitative trait loci (QTLs) for fruit quality traits in apple. Plant Mol Biol Rep 32:109–116CrossRefGoogle Scholar
  50. Quilot B, Wu BH, Kervella J, Genard M, Foulongue M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild-related species P. davidiana. Theor Appl Genet 109:884–897PubMedCrossRefGoogle Scholar
  51. Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56(422):3083–3092PubMedCrossRefGoogle Scholar
  52. R Development Core Team (2011) R: a language and environment for statistical computing. The R foundation for statistical computing, Vienna, Austria.
  53. Rosyara U, Bink MCAM, van de Weg E, Zhang G, Wang D, Sebolt A, Dirlewanger E, Quero-Garcia J, Schuster M, Iezzoni A (2013) Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol Breed 32(4):875–887CrossRefGoogle Scholar
  54. Rudell DR, Mattheis JP, Curry EA (2008) Prestorage ultraviolet-white light irradiation alters apple peel metabolome. J Agric Food Chem 56(3):1138–1147PubMedCrossRefGoogle Scholar
  55. SAS Institute Inc (2012) What’s new in SAS® 9.3. SAS Institute Inc, CaryGoogle Scholar
  56. Shangguan L, Song C, Leng X, Kayesh E, Sun X, Fang J (2014) Mining and comparison of the genes encoding the key enzymes involved in sugar biosynthesis in apple, grape, and sweet orange. Sci Hortic 165:311–318CrossRefGoogle Scholar
  57. Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Wang KL, Allan AC, Gardiner SE, Chagné D, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832CrossRefGoogle Scholar
  58. Suni M, Nyman M, Eriksson NA, Björk L, Björck I (2000) Carbohydrate composition and content of organic acids in fresh and stored apples. J Sci Food Agric 80:1538–1544CrossRefGoogle Scholar
  59. Tartarini S (1996) RAPD markers linked to the Vf gene for scab resistance in apple. Theor Appl Genet 92:803–810PubMedCrossRefGoogle Scholar
  60. Ulrich D, Dunemann F (2012) Towards the development of molecular markers for apple volatiles. Flavour Fragr J 27:286–289CrossRefGoogle Scholar
  61. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839PubMedCrossRefGoogle Scholar
  62. Visser T, Schaap AA, de Vries DP (1968) Acidity and sweetness in apple and pear. Euphytica 17:153–167CrossRefGoogle Scholar
  63. Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544CrossRefGoogle Scholar
  64. Warner G (2013) Packer finds his niche. Good fruit grower. January 1st.
  65. Yamaki S (1992) Alteration of cellular compartmentation and membrane permeability to sugars in immature and mature apple fruit. J Am Soc Hortic Sci 117:951–954Google Scholar
  66. Yamaki S (2010) Metabolism and accumulation of sugars translocated to fruit and their regulation. J Jpn Soc Hortic Sci 79:1–15CrossRefGoogle Scholar
  67. Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan M, Zhou Y, Gu C, Zhang X, Han Z, Korban S, Li S, Han Y (2012) Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genom 13:537CrossRefGoogle Scholar
  68. Zhu Y, Barritt BH (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus × domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet Genomes 4:555–562CrossRefGoogle Scholar
  69. Zhu Z, Liu R, Li B, Tian S (2013) Characterisation of genes encoding key enzymes involved in sugar metabolism of apple fruit in controlled atmosphere storage. Food Chem 141:3323–3328PubMedCrossRefGoogle Scholar
  70. Zini E, Biasioli F, Gasperi F, Mott D, Aprea E, Märk TD, Patocchi A, Gessler C, Komjanc M (2005) QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica 145:269–279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yingzhu Guan
    • 1
  • Cameron Peace
    • 2
  • David Rudell
    • 3
  • Sujeet Verma
    • 2
  • Kate Evans
    • 1
    Email author
  1. 1.Department of Horticulture, Tree Fruit Research and Extension CenterWashington State UniversityWenatcheeUSA
  2. 2.Department of HorticultureWashington State UniversityPullmanUSA
  3. 3.Tree Fruit Research LaboratoryUSDA-ARSWenatcheeUSA

Personalised recommendations