Molecular Breeding

, 35:69

Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers

  • Freddy Mora
  • Dalma Castillo
  • Bettina Lado
  • Ivan Matus
  • Jesse Poland
  • François Belzile
  • Jarislav von Zitzewitz
  • Alejandro del Pozo
Article

Abstract

Association mapping has been proposed to identify polymorphisms involved in phenotypic variations and may prove useful in identifying interesting alleles for breeding purposes. Using this approach, a total of 382 cultivars and advanced lines of spring wheat obtained from three breeding programs (Chile, Uruguay and CIMMYT) were evaluated for plant height (PH), kernels per spike (KS), 1,000 kernel weight (TKW), grain yield and carbon isotope discrimination (Δ13C) and tested for genotyping-by-sequencing-derived SNP markers across the hexaploid wheat genome. A Bayesian clustering approach via Markov chain Monte Carlo was performed to examine the genetic differentiation (FST) among different genetic groups. The results indicated the existence of two distinct and strongly differentiated genetic groups. Cluster I contained 215 genotypes (56.3 %), over 60 % (137/215) of which were collected from CIMMYT. Cluster II showed the highest FST value, according to 95 % credible interval. Linkage disequilibrium (LD) among SNPs was calculated for the A, B and D genomes and at the whole-genome level. LD decayed over a longer genetic distance for the D genome than for the A and B genomes. In the A and B genomes, LD declined to 50 % of its initial value at about 2 cM. In the D genome, LD was much more extensive, declining to 50 % of its initial value only at 22 cM. In the whole genome, LD declined to 50 % of its initial value at an average of 4 cM. Important genomic regions associated with complex traits in spring wheat were identified. Selection on these regions may increase the efficiency of the current breeding programs. Although most of the associations were environment specific, some stable associations were detected for Δ13C, KS, PH and TKW. Chromosomes 1A, 3A, 4A and 5A were the most important chromosomes, as they comprised quantitative trait loci (QTL) for Δ13C, a trait that can be used as an indirect tool for increased water-use efficiency in wheat. Environment-specific genomic regions were detected, indicating the presence of QTL-by-environment interaction. To produce suitable genotypes under contrasting water availability conditions, QTL × E interactions (and genotype-by-environment interaction) should be considered in the current spring wheat breeding program.

Keywords

Drought Genetic structure Linkage disequilibrium QTLs Water stress 

Supplementary material

11032_2015_264_MOESM1_ESM.docx (131 kb)
Supplementary material 1 (DOCX 131 kb)
11032_2015_264_MOESM2_ESM.xlsx (29 kb)
Supplementary material 2 (XLSX 29 kb)
11032_2015_264_MOESM3_ESM.docx (31 kb)
Supplementary material 3 (DOCX 30 kb)

References

  1. Alheit KV, Maurer HP, Reif JC, Tucker MR, Hahn V, Weissmann EA, Würschum T (2012) Genome-wide evaluation of genetic diversity and linkage disequilibrium in winter and spring triticale (× Triticosecale Wittmack). BMC Genom 13:235CrossRefGoogle Scholar
  2. Araus JL, Slafer GA, Reynolds M, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940CrossRefPubMedCentralPubMedGoogle Scholar
  3. Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412CrossRefGoogle Scholar
  4. Arriagada O, Mora F, Dellarossa JC, Ferreira MFS, Cervigni GDL, Schuster I (2012) Bayesian mapping of quantitative trait loci (QTL) controlling soybean cyst nematode resistant. Euphytica 186:907–917CrossRefGoogle Scholar
  5. Bertioli DJ, Ozias-Akins P, Chu Y, Dantas KM, Santos SP, Gouvea E, Guimarães PM, Leal-Bertioli SCM, Knapp SJ, Moretzsohn MC (2014) The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. G3 4:89–96CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bradbury PJ, Zhang ZW, Kroon DE, Casstevens RM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  7. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177CrossRefPubMedCentralPubMedGoogle Scholar
  8. Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14CrossRefGoogle Scholar
  9. Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME (2010) Akhunov ED (2010), Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genom 11:727CrossRefGoogle Scholar
  10. Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer MF, Chapman SC (2012) Environment characterization as an aid to wheat improvement: interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia. J Exp Bot 62:1743–1755CrossRefGoogle Scholar
  11. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460CrossRefPubMedGoogle Scholar
  12. Crossa J, Burgueñ J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913CrossRefPubMedCentralPubMedGoogle Scholar
  13. Cuesta-Marcos A, Szűcs P, Close TJ, Filichkin T, Muehlbauer GJ, Smith KP, Hayes PM (2010) Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genom. doi:10.1186/1471-2164-11-707 Google Scholar
  14. del Pozo A, del Canto P (1999) Áreas agroclimáticas y sistemas productivos en la VII y VIII regiones. Instituto de Investigaciones Agropecuarias. Ministerio de Agricultura. Serie Quilamapu N◦ 113, 115 pGoogle Scholar
  15. Dodig D, Zori M, Kobiljski B, Savi J, Kandi V, Quarrie S, Barnes J (2012) Genetic and association mapping study of wheat agronomic traits under contrasting water regimes. Int J Mol Sci 13:6167–6188CrossRefPubMedCentralPubMedGoogle Scholar
  16. Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet. doi:10.1007/s00122-013-2257-8 PubMedGoogle Scholar
  17. El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM (2014) Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci. doi:10.1016/j.tplants.2014.01.001
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620Google Scholar
  19. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefPubMedGoogle Scholar
  20. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485CrossRefPubMedGoogle Scholar
  21. Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106CrossRefPubMedGoogle Scholar
  22. Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS ONE 6:e17279. doi:10.1371/journal.pone.0017279.t001 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Heidelberger P, Welch PD (1983) Simulation run length control in the presence of an initial transient. Oper Res 31:1109–1114Google Scholar
  24. Inostroza L, del Pozo A, Matus I, Castillo D, Hayes P, Machado S, Corey A (2009) Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol Breed 23:365–376CrossRefGoogle Scholar
  25. Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413CrossRefGoogle Scholar
  26. Kumar S, Singh B (2009) Effect of water stress on carbon isotope discrimination and Rubisco activity in bread and durum wheat genotypes. Physiol Mol Biol Plants 15(3):281–286CrossRefPubMedCentralPubMedGoogle Scholar
  27. Lado L, Matus I, Rodríguez A, Inostroza L, Poland J, Belzile F, del Pozo A, Quincke M, von Zitzewitz J (2013) Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data. G3 3:2105–2114CrossRefPubMedCentralPubMedGoogle Scholar
  28. Laidò G, Marone D, Russo MA, Colecchia SA, Mastrangelo AM, De Vita P, Papa R (2014) Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PLoS ONE 9:e95211. doi:10.1371/journal.pone.0095211 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Liu L, Wang L, Yao J, Zheng Y, Zhao C (2010) Association mapping of six agronomic traits on chromosome 4A of wheat (Triticum aestivum L.). Mol. Plant Breed. doi:10.5376/mpb.2010.01.0005 Google Scholar
  30. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63CrossRefPubMedGoogle Scholar
  31. Mamidi S, Chikara S, Goos RJ, Hyten DL, Annam D, Moghaddam SM, Lee RK, Cregan PB, McClean PE (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4:154–164CrossRefGoogle Scholar
  32. Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich E, Wesenberg DM (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 101:173–184CrossRefGoogle Scholar
  33. McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulata VJ, Zellerc G, Clark RM, Hoeng DR, Bureaug TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Ratsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. PNAS 106(30):12273–12278CrossRefPubMedCentralPubMedGoogle Scholar
  34. Mora F, Serra N (2014) Bayesian estimation of genetic parameters for growth, stem straightness, and survival in Eucalyptus globulus on an Andean Foothill site. Tree Genet Genomes. doi:10.1007/s11295-014-0716-2 Google Scholar
  35. Moragues M, Comadran J, Waugh R, Milne I, Flavell AJ, Russell JR (2010) Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data. Theor Appl Genet 120:1525–1534CrossRefPubMedGoogle Scholar
  36. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202CrossRefPubMedCentralPubMedGoogle Scholar
  37. Nadeau JH, Frankel WN (2000) The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat Genet 25:381–384CrossRefPubMedGoogle Scholar
  38. Nei M, Li WH (1976) The transient distribution of allele frequencies under mutation pressure. Genet Res 28:205–214CrossRefPubMedGoogle Scholar
  39. Nordborg M, Tavare S (2002) Linkage disequilibrium: what history has to tell us. Trend Genet 18:83–90CrossRefGoogle Scholar
  40. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  41. Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol AB, Saranga Y (2009) Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant, Cell Environ 32:758–779CrossRefGoogle Scholar
  42. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253CrossRefPubMedCentralPubMedGoogle Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  44. Ranc N, Muños S, Xu J, Le Paslier MC, Chauveau A, Bounon R, Rolland S, Bouchet JP, Brunel D, Causse M (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3 2:853–864CrossRefPubMedCentralPubMedGoogle Scholar
  45. Rebetzke GJ, van Herwaarden AF, Jenkeins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA (2008a) Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aust J Agric Res 59:891–905CrossRefGoogle Scholar
  46. Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA (2008b) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118:123–137CrossRefPubMedGoogle Scholar
  47. Reynolds M, Mujeeb-kazi A, Sawkins M (2005) Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Ann Appl Biol 146:239–259CrossRefGoogle Scholar
  48. Saavedra J, Silva TA, Mora F, Scapim CA (2013) Bayesian analysis of genetic structure of a Brazilian popcorn germplasm using data from simple sequence repeats (SSR). Chil J Agric Res 73:99–107CrossRefGoogle Scholar
  49. Simko I, Haynes KG, Jones RW (2006) Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 173(4):2237–2245CrossRefPubMedCentralPubMedGoogle Scholar
  50. Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, Ciavarrella M (2007) Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154:401–408CrossRefGoogle Scholar
  51. Stolpe NB (2006) Descripciones de los principales suelos de la VIII Región de Chile. Universidad de Concepción, Departamento de Suelos y recursos naturales 112Google Scholar
  52. Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol 2:125–141CrossRefPubMedGoogle Scholar
  53. Tambussi EA, Bort J, Araus JL (2007) Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Ann Appl Biol 150:307–321CrossRefGoogle Scholar
  54. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454CrossRefPubMedGoogle Scholar
  55. Wei W, Zhang Y, Lü H, Li D, Wang L, Zhang X (2013) Association analysis for quality traits in a diverse panel of Chinese sesame (Sesamum indicum L.) germplasm. INTEGR. Plant Biol 55(8):745–758Google Scholar
  56. Wu X, Chang X, Jing R (2012) Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS ONE 7:e31249CrossRefPubMedCentralPubMedGoogle Scholar
  57. Würschum T, Langer SM, Longin CFH, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif JC (2013) Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 126:1477–1486CrossRefPubMedGoogle Scholar
  58. Yang D, Jing R, Chang X, Li W (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584CrossRefPubMedCentralPubMedGoogle Scholar
  59. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160CrossRefPubMedGoogle Scholar
  60. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421Google Scholar
  61. Zhang H, Cui F, Wang L, Li J, Ding A, Zhao C, Bao Y, Yang Q, Wang H (2013) Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. J Genet 92:213–231. doi:10.1371/journal.pone.0031249 CrossRefPubMedGoogle Scholar
  62. Zhao F, Xu S (2012) Genotype by environment interaction of quantitative traits: a case study in barley. G3 2:779–788CrossRefPubMedCentralPubMedGoogle Scholar
  63. Zhu Ch, Gore M, Buckler ES, Jianming Yu (2008) Status and prospects of association mapping in plants. The Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Freddy Mora
    • 1
  • Dalma Castillo
    • 2
  • Bettina Lado
    • 3
  • Ivan Matus
    • 2
  • Jesse Poland
    • 4
  • François Belzile
    • 5
  • Jarislav von Zitzewitz
    • 6
  • Alejandro del Pozo
    • 7
  1. 1.Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
  2. 2.Centro Regional de Investigación QuilamapuInstituto de Investigaciones AgropecuariasChillánChile
  3. 3.Estación Experimental La EstanzuelaInstituto Nacional de Investigación AgropecuariaColoniaUruguay
  4. 4.Departments of Plant Pathology and Agronomy, Wheat Genetics Resource CenterKansas State UniversityManhattanUSA
  5. 5.Département de Phytologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuebecCanada
  6. 6.SECOBRA Saatzucht GmbHFeldkirchen 3MoosburgGermany
  7. 7.Facultad de Ciencias AgrariasUniversidad de TalcaTalcaChile

Personalised recommendations