Skip to main content
Log in

Dual silencing of DmCPD and DmGA20ox genes generates a novel miniature and delayed-flowering Dendranthema morifolium variety

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Chrysanthemums (Dendranthema morifolium) are one of the most economically important perennial flowering plants, with floricultural (cut flowers), ornamental crop (pot and garden flowers) and, for some cultivars, medicinal uses. Plant architecture is an important agronomic trait for plants with a high ornamental and economic value. In this study, two miniature-related genes, DmCPD and DmGA20ox, were cloned and their tissue-specific expression patterns were analyzed. The results showed that the two genes were both highly expressed in stems, mature leaves, and flowers, and that DmCPD was also highly expressed in pedicels. To generate miniature plants, an RNAi expression vector targeting both DmCPD and DmGA20ox was constructed and transformed into chrysanthemum plants. Smaller plant size and slower growth and development of flowers were observed in dual-silenced chrysanthemums. Brassinosteroid and gibberellin contents in leaves and flower buds of transgenic plants were significantly decreased. Furthermore, the expressions of brassinolide-, gibberellin-, and flowering-related genes were down-regulated by varying degrees in dual-silenced plants. These results suggest that DmCPD and DmGA20ox play important roles in plant architecture, and brassinolide and gibberellin are important hormones in controlling plant architecture. This miniaturization strategy provides an efficient approach for generating new varieties of ornamental plants and crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251(4):533–549

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Sci Signal 131(14):3357

    CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell Online 10(2):219–230

    Article  CAS  Google Scholar 

  • Bai M-Y, Shang J-X, Oh E, Fan M, Bai Y, Zentella R, Sun T-P, Wang Z-Y (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14(8):810–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell Online 10(5):791–800

    Article  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119(3):721–743

    CAS  Google Scholar 

  • Cai P, Long H, Deng G, Pan Z, Peng Z, Yu M (2012) Molecular cloning, characterization, and expression analysis of genes encoding gibberellin 20-oxidase in Dasypyrum villosum dwarf mutant. Plant Mol Biol Report 30(5):1110–1116

    Article  CAS  Google Scholar 

  • Campbell P, Braam J (1998) Co- and/or post-translational modifications are critical for TCH4 XET activity. Plant J 15(4):553–561

    Article  CAS  PubMed  Google Scholar 

  • Chai Y-m, Zhang Q, Tian L, Li C-L, Xing Y, Qin L, Shen Y-Y (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69(1):63–69

    Article  CAS  Google Scholar 

  • Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136(1):2641–2651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christodoulou A, Weaver R, Pool R (1968) Relation of gibberellin treatment to fruit-set, berry development, and cluster compactness in Vitis vinifera grapes. Proc Am Soc Hortic Sci 92:301–310

    Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell Online 23(4):1219–1230

    Article  CAS  Google Scholar 

  • Cockshull K, Kofranek A (1994) High night temperatures delay flowering, produce abnormal flowers and retard stem growth of cut-flower chrysanthemums. Sci Hortic 56(3):217–234

    Article  Google Scholar 

  • Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118(2):333–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326

    Article  CAS  PubMed  Google Scholar 

  • Damann MP, Lyons RE (1996) Natural chilling and limited inductive photoperiod affect flowering in two Asteraceae genera. J Am Soc Hortic Sci 121(4):694–698

    Google Scholar 

  • De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D (2005) Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol 46(6):827–836

    Article  PubMed  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21(9):R365–R373

    Article  CAS  PubMed  Google Scholar 

  • Diener AC, Li H, Zhou W-X, Whoriskey WJ, Nes WD, Fink GR (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell Online 12(6):853–870

    Article  CAS  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134(15):2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Evans LT (1998) Feeding the ten billion: plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93(16):8449–8454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421(6924):740–743

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54(1):137–164

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Li J, Choi Y-H, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell Online 9(11):1951–1962

    Article  CAS  Google Scholar 

  • Gertsson U, Andersson E (1985) Propagation of Chrysanthemum × hortorum and Philodendron scandens by tissue culture. Rapport-Sveriges Lantbruksuniversitet, Institutionen foer Traedgaardsvetenskap

  • Groot SP, Bruinsma J, Karssen CM (1987) The role of endogenous gibberellin in seed and fruit development of tomato: studies with a gibberellin-deficient mutant. Physiol Plant 71(2):184–190

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Hoad GV (1994) Growth regulators and crop productivity. Marcel Dekker, New York

    Google Scholar 

  • Hill G (1968) Shoot formation in tissue cultures of chrysanthemum ‘Bronze Pride’. Physiol Plant 21(2):386–389

    Article  CAS  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409(6819):525–529

    Article  CAS  PubMed  Google Scholar 

  • Iliev EA, Xu W, Polisensky DH, Oh M-H, Torisky RS, Clouse SD, Braam J (2002) Transcriptional and posttranscriptional regulation of Arabidopsis TCH4 expression by diverse stimuli. Roles of cis regions and brassinosteroids. Plant Physiol 130(2):770–783

    Article  PubMed Central  PubMed  Google Scholar 

  • Karlsson MG, Hanscom JT (1992) Influence of low temperature on floral development in chrysanthemum. HortScience 27(6):649

    Google Scholar 

  • Kaul V, Miller RM, Hutchinson JF, Richards D (1990) Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell Tissue Organ Cult 21(1):21–30

    Article  CAS  Google Scholar 

  • Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9(5):701–713

    Article  CAS  Google Scholar 

  • Kende H, Lang A (1964) Gibberellins and light inhibition of stem growth in peas. Plant Physiol 39(3):435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim T-W, Wang Z-Y (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  CAS  PubMed  Google Scholar 

  • Koorneef M, Elgersma A, Hanhart C, Loenen-Martinet E-v, Rijn L v, Zeevaart J (1985) A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65(1):33–39

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  CAS  PubMed  Google Scholar 

  • Lang A (1957) The effect of gibberellin upon flower formation. Proc Natl Acad Sci USA 43(8):709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lemieux C, Firoozabady E, Robinson K, Jong JD (1990) Agrobacterium-mediated transformation of chrysanthemum. In: Integration of in vitro techniques in ornamental plant breeding. Proceedings, symposium, 10–14 November 1990. EUCARPIA, pp 150–155

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90(5):929–938

    Article  CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37(5):720–729

    Article  CAS  PubMed  Google Scholar 

  • Malaure R, Barclay G, Power J, Davey M (1991) The production of novel plants from florets of Chrysanthemum morifolium using tissue culture. 1. Shoot regeneration from ray florets and somaclonal variation exhibited by the regenerated plants. J Plant Physiol 139(1):8–13

    Article  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39(1):23–52

    Article  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377(6549):522–524

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35(5):613–623

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121(3):743–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisamatsu T (2012) CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J Exp Bot 63(3):1461–1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142(3):1193–1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olszewski N, T-p Sun, Gubler F (2002) Gibberellin signaling biosynthesis, catabolism, and response pathways. Plant Cell Online 14(suppl 1):S61–S80

    CAS  Google Scholar 

  • Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395(6702):561–566

    Article  CAS  PubMed  Google Scholar 

  • Pavingerová D, Dostál J, Bísková R, Benetka V (1994) Somatic embryogenesis and Agrobacterium-mediated transformation of chrysanthemum. Plant Sci 97(1):95–101

    Article  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999a) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741):256–260

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999b) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741):256–261

    Article  CAS  PubMed  Google Scholar 

  • Pharis RP, King RW (1985) Gibberellins and reproductive development in seed plants. Annu Rev Plant Physiol 36(1):517–568

    Article  CAS  Google Scholar 

  • Qiao F, Zhao K-J (2011) The influence of RNAi targeting of OsGA20ox2 gene on plant height in rice. Plant Mol Biol Report 29(4):952–960

    Article  CAS  Google Scholar 

  • Ross JJ, O’Neill DP, Wolbang CM, Symons GM, Reid JB (2001) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20(4):336–353

    Article  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416(6882):701–702

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G (2002b) A mutant gibberellin-synthesis gene in rice. Nature 416(6882):701

    Article  CAS  PubMed  Google Scholar 

  • Schlagnhaufer CD, Arteca RN (1985) Brassinosteroid-induced epinasty in tomato plants. Plant Physiol 78(2):300–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott JW (1989) Micro-Tom—a miniature dwarf tomato. Florida Agric Exp Stn Circ 370:1–6

    Google Scholar 

  • Seiichim F, de Jongzl J, Rademakerz W (1995) Efficient genetic transformation of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) using stem segments. Breed Sci 45:179–184

    Google Scholar 

  • Shchennikova A, Shulga O, Angenent G, Skryabin K (2003) Genetic regulation of inflorescence development in Chrysanthemum. Dokl Biol Sci 391:368–370

    Article  CAS  PubMed  Google Scholar 

  • Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC (2004) Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol 134(4):1632–1641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sherman JM, Moyer JW, Daub ME (1998) A regeneration and Agrobacterium-mediated transformation system for genetically diverse Chrysanthemum cultivars. J Am Soc Hortic Sci 123(2):189–194

    Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126(2):770–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith J, Kamp-Glass M (1990) Gibberelin promotes flower stem elongation on the chrysanthemums. HortScience 25(9):1118

    Google Scholar 

  • Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) Hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell Online 14(5):1017–1031

    Article  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99(13):9043–9048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sui J-M, Guo B-T, Wang J-S, Qiao L-X, Zhou Y, Zhang H-G, Gu M-H, Liang G-H (2012) A new GA-insensitive semidwarf mutant of rice (Oryza sativa L.) with a missense mutation in the SDG gene. Plant Mol Biol Report 30(1):187–194

    Article  CAS  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Takatsu Y, Tomotsune H, Kasumi M, Sakuma F (1998) Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) cultivars and the improved protocol for Agrobacterium-mediated genetic transformation. J Jpn Soc Hortic Sci 67(6):958–964

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA (2003) Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnol Adv 21(8):715–766

    Article  CAS  PubMed  Google Scholar 

  • Topping JF, May VJ, Muskett PR, Lindsey K (1997) Mutations in the HYDRA1 gene of Arabidopsis perturb cell shape and disrupt embryonic and seedling morphogenesis. Development 124(21):4415–4424

    CAS  PubMed  Google Scholar 

  • Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T-p (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135(2):1008–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Wordragen MF, de Jong J, Huitema HB, Dons HJ (1991) Genetic transformation of chrysanthemum using wild type Agrobacterium strains; strain and cultivar specificity. Plant Cell Rep 9(9):505–508

    Article  PubMed  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100(1):403–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong LM, Abel S, Shen N, Foata M, Mall Y, Theologis A (1996) Differential activation of the primary auxin response genes, PS-IAA4/5 and PS-IAA6, during early plant development. Plant J 9(5):587–599

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. The Plant Cell Online 7(10):1555–1567

    Article  CAS  Google Scholar 

  • Yin C, Gan L, Ng D, Zhou X, Xia K (2007) Decreased panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A. J Exp Bot 58(10):2441–2449

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lian L, Liu Q, Xiao N, Fang R, Liu Q, Chen X (2013) Altered expression of CmNRRa changes flowering time of Chrysanthemum morifolium. Plant Biotechnol J 11(3):373–379

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 31171968 and 31100089), and the Fundamental Research Funds for the Central Universities (CDJXS10232209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongli Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2015_239_MOESM1_ESM.tif

Supplemental Fig. 1 Phylogenetic analysis and multiple sequence alignment of DmCPD and other cytochrome P450 family proteins. a. Phylogenetic analysis of DmCPD and other proteins was conducted by the neighbor-joining method, and bootstrap analysis of 1,000 replicates. DmCPD is marked with an asterisk. b. Multiple sequence alignment of DmCPD and other cytochrome P450 family proteins. Identical amino acids are shaded in black, and similar amino acids are shaded in gray. DmCPD is marked with an asterisk. Accession numbers and corresponding references for the proteins listed are as follows: DmCPD (BAE16978), EpCPD (AGV40782), AaCPD (ABC94481), SlCPD (XP_004240946), GhCPD (ACR20477), CjCPD (AAZ39038), NtCPD (CAD27417), PhCPD (AGJ98214), PeCPD(ADK66927), CsCPD(AAZ05071). (TIFF 1181 kb)

11032_2015_239_MOESM2_ESM.tif

Supplemental Fig. 2 Phylogenetic analysis and multiple sequence alignment of DmGA20ox and other GA20ox proteins. a. Phylogenetic analysis of DmGA20ox and other GA20ox proteins was conducted by the neighbor-joining method, and bootstrap analysis of 1,000 replicates. DmGA20ox is marked with an asterisk. b. Multiple sequence alignment of DmGA20ox and other GA20ox proteins. DmGA20ox is marked with an asterisk. Identical amino acids are shaded in black, and similar amino acids are shaded in gray. Accession numbers and corresponding references for the proteins listed are as follows: DmGA20ox (BAG48319), CaGA20ox (ADZ96940), GhGA20ox (ACM68923), RcGA20ox (XP_002510873), HaGA20ox (CAQ43616), NtGA20ox (BAC76428), LsGA20ox (BAA37128). (TIFF 1465 kb)

Supplementary material 3 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Chen, G., Liu, Q. et al. Dual silencing of DmCPD and DmGA20ox genes generates a novel miniature and delayed-flowering Dendranthema morifolium variety. Mol Breeding 35, 67 (2015). https://doi.org/10.1007/s11032-015-0239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0239-z

Keywords

Navigation