Skip to main content
Log in

Genetic dissection of quantitative powdery mildew resistance loci in tetraploid wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Durum wheat, Triticum turgidum ssp. durum Desf., is an important crop particularly in the Mediterranean basin. Powdery mildew, caused by the pathogen Blumeria graminis f. sp. tritici (Bgt), is a major disease of wheat that results in significant yield losses worldwide. A recombinant inbred line (RIL) population, derived from a cross between durum wheat and wild emmer wheat, T. turgidum ssp. dicoccoides, was used for genomic dissection of quantitative and qualitative resistance loci against wheat powdery mildew based on a genomic map of >600 markers, evenly distributed across the A and B genomes of tetraploid wheat. The genetic analysis of the phenotypic reactions of the RIL population to two Bgt isolates revealed two different resistance mechanisms. The first is monogenic: a wild emmer wheat allele in a single locus conferring complete resistance to Bgt#15, previously designated as PmG16. The second one is polygenic: a set of durum wheat alleles, in five independent QTLs that control partial resistance to Bgt#66 in the RIL population, with a LOD score range of 3.4–19.8. One of them is a major quantitative resistance locus (QRL) that was mapped on chromosome 1A and explains 26.4 % of the variance. In most of the detected QRLs, the durum wheat alleles conferred resistance to powdery mildew. These findings are exceptional in the sense that, so far, only a few Pm alleles originated from a durum wheat background. Therefore, our results emphasize the high potential of exploiting the wide genetic diversity of tetraploid wheat germplasm for wheat breeding using modern wheat genomics tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahadur P, Sinha VC, Ruiker SK, Upadhyaya YM (1977) Horizontal and vertical resistance in wheat-exotic durums. Indian J Genet Plant Breed 37:328–334

    Google Scholar 

  • Bahadur P, Sinha VC, Ruiker SK, Upadhyaya YM (1979) Sources of resistance to rusts and powdery mildew in wheat. Indian J Genet Plant Breed 39:402–411

    Google Scholar 

  • Ben-David R (2011) Molecular mapping of powdery mildew resistance genes derived from the Triticum turgidum gene pool. Ph.D. thesis submitted to The University of Haifa, Haifa, Israel

  • Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, Fahima T (2010) Identification and mapping of powdery mildew resistance gene PmG16, derived from wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 121:499–510

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300

    Google Scholar 

  • Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 33:279–300

    Article  Google Scholar 

  • Bougot Y, Lemoine J, Pavoine MT, Guyomar’ch H, Gautier V, Muranty H, Barloy D (2006) A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breed 125:550–556

    Article  CAS  Google Scholar 

  • Braun U, Cook RTA, Inman AJ, Shin HD (2000) The taxonomy of the powdery mildew fungi. In: Be´langer RR, Bushnell WR, Aleid JD, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, MN, USA, pp 13–55

  • Briggle LW (1960) Source of resistance to Erysiphe graminis f. sp. tritici from tetraploid Triticum species. Agron Abstr 1960–65, 45

  • Brodny U, Nelson RR, Gregory LV (1986) The residual and interactive expression of “defeated” wheat stem rust resistance genes. Phytopathology 76:546–549

    Article  Google Scholar 

  • Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin JM, Doussinault G (2001) A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet 103:962–971

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Develey-Rivière M-P, Galiana E (2007) Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol 175:405–416

    Article  PubMed  Google Scholar 

  • Elias EM, Manthey FA (2005) End products. In: Royo C, Nachit MN, Di Fonzo N, Araus JL, Pfeiffer WH, Slafer GA (eds) Durum wheat breeding. Current approaches and future strategies. Food Academic Press, The Haworth Press, New York, pp 63–86

    Google Scholar 

  • FAOstat (2012) Available by food and agriculture organization. http://faostat.fao.org/. Accessed 17 Sept 2012

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  Google Scholar 

  • Hsam SLK, Zeller FJ (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews, a comprehensive treatise. APS Press, St. Paul, pp 219–238

    Google Scholar 

  • Huang XQ, Hsam SLK, Mohler V, Röder MS, Zeller F (2004) Genetic mapping of three alleles at the Pm3 locus conferring powdery mildew resistance in common wheat (Triticum aestivum L.). Genome 47:1130–1136

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Xie C, Ni Z, Yang T, Nevo E, Fahima T, Liu Z, Sun Q (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385–390

    Article  CAS  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korol AB, Ronin YI, Itskovich AM, Peng J, Nevo E (2001) Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157:1789–1803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lan C, He Z, Singh RP, Rosewarne GM, Chen X, Xia X (2014) Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci 54:1907–1925

    Article  Google Scholar 

  • Liang SS, Suenaga K, He ZH, Wang ZL, Liu HY, Wang DS, Singh RP, Sourdille P, Xia XC (2006) Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathol 96:784–789

    Article  CAS  Google Scholar 

  • Lu Q, Bjørnstad Å, Ren Y, Asad M, Xia X, Chen X, Ji F, Shi J, Lillemo M (2012) Partial resistance to powdery mildew in German spring wheat ‘Naxos’ is based on multiple genes with stable effects in diverse environments. Theor Appl Genet 110:1401–1409

    Google Scholar 

  • Maccaferri M, Cane’ MA, Sanguineti MC, Salvi S, Colalongo MC, Massi A, Clarke F, Knox R, Pozniak CJ, Clarke JM, Fahima T, Dubcovsky J, Xu S, Ammar K, Karsai I, Vida G, Tuberosa R (2014a) A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping. BMC Genomics 15:873

  • Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak CJ, N’Diaye A, Xu S, Tuberosa R (2014b) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotech J (in press)

  • Marone D, Russo MA, Laidò G, De Vita P, Papa R, Blanco A, Mastrangelo AM (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genom 14:562

    Article  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-Assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  • Nachit MM, Elouafi I, Pagnotta MA, Elsaleh A, Lacono E, Labhilili M, Asbati AP, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E, Sorrels ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    Article  CAS  Google Scholar 

  • Nass HA, Pedersen WL, MacKenzie DR, Nelson RR (1981) The residual effects of some “defeated” powdery mildew resistance genes in isolines of winter wheat. Phytopathology 71:1315–1318

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens: present situation. Euphytica 124:147–156

    Article  CAS  Google Scholar 

  • Parlevliet JE, Zadoks JC (1977) The integrated concept of disease resistance: a new view including horizontal and vertical resistance in plants. Euphytica 26:5–21

    Article  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol A, Fahima T, Saranga Y (2009a) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol AB, Saranga Y (2009b) Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant, Cell Environ 32:758–779

    Article  CAS  Google Scholar 

  • Peleg Z, Fahima T, Korol AB, Abbo S, Saranga Y (2011) Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot 62:5051–5061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng JH, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser Randall J, Pratt RC, Nelson RJ (2008) Shades of gray: the world of quantitative disease resistance. Trend Plant Sci 14:21–29

    Article  Google Scholar 

  • Ronin YI, Korol AB, Nevo E (1999) Single- and multiple-trait mapping analysis of linked quantitative trait loci: some asymptotic analytical approximations. Genetics 151:387–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sourdille P, Robe P, Tixier MH, Doussinault G, Pavoine MT, Bernard M (1999) Location of Pm3 g, a powdery mildew resistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica 110:193–198

    Article  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    CAS  PubMed  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

  • Tucker DM, Griffey CA, Liu S, Brown-Guedira G, Marshall DS, Maroof MAS (2007) Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica 155:1–13

    Article  Google Scholar 

  • Upadhyay MK, Kumar R, Singhal NC (1972) Sources of resistance to powdery mildew of wheat. Indian J Genet Plant Breed 32:242–246

    Google Scholar 

  • Wang ZL, Li LH, He ZH, Duan XY, Zhou YL, Chen XM, Lillemo M, Singh RP, Wang H, Xia XC (2005) Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis 89:457–463

    Article  CAS  Google Scholar 

  • Xie W, Ben-David R, Zeng B, Distelfeld A, Röder MS, Dinoor A, Fahima T (2012) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 124:911–922

    Article  CAS  PubMed  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  CAS  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhu ZD, Kong XY, Zhou RH (2004) Identification and microsatellite markers of a resistance gene to powdery mildew in common wheat introgressed from Triticum durum. Acta Botanica Sinica 46:867–872

    Google Scholar 

Download references

Acknowledgments

This study was supported by The Israel Science Foundation Grant #205/08 and equipment Grants 1478/04 and #1719/08. The authors thank A. Fahoum and M. Chatzav for their excellent technical assistance and to Dr. T. Kis-Papo for scientific editing of the manuscript.

Conflict of interest

All authors of the manuscript have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzion Fahima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-David, R., Peleg, Z., Dinoor, A. et al. Genetic dissection of quantitative powdery mildew resistance loci in tetraploid wheat. Mol Breeding 34, 1647–1658 (2014). https://doi.org/10.1007/s11032-014-0178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0178-0

Keywords

Navigation