Skip to main content

Identification of QTL for agronomic traits of importance for olive breeding

Abstract

Development of methodologies for early selection is one of the most important goals of olive breeding programs at present. In this context, the identification of molecular markers associated with beneficial alleles could allow the development of marker-assisted selection (MAS) strategies in olive breeding programs. Fruit-related and plant vigor traits, which are of key importance for olive selection and breeding, were analyzed during two seasons in a progeny derived from the cross ‘Picual’ × ‘Arbequina.’ Quantitative trait loci (QTL) analyses were performed using MapQTL 4.0. A total of 22 putative QTLs were identified in the map of ‘Arbequina.’ QTLs clustered in linkage groups (LG) 1, 10 and 17. QTLs for oil-related traits located in LG 1 and 10 explained around 20–30 % of the phenotypic variability depending on the season and the trait. QTL for moisture-related traits were detected in LG 1, 10 and 17, and QTLs for the ratio pulp to stone were identified in LG 10 and 17 explaining around 15–20 %. Interaction between QTLs for the same trait was investigated. The significance of these results was discussed considering the co-localization of QTLs and Pearson correlations among traits. Five additional QTLs were detected in the map of ‘Picual.’ Four of them clustered in LG 17 indicating the presence of a QTL for fruit weight explaining around 12.7–15.2 % of the variability. Additionally, a QTL for trunk diameter was detected in LG 14 explaining 16 % of the variation. These results represent an important step toward the application of MAS in olive breeding programs.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano M, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10:399

    Article  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003a) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor Appl Genet 107:857–863

    CAS  PubMed  Article  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003b) Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content. Plant Breed 122:141–145

    CAS  Article  Google Scholar 

  • Atienza SG, de la Rosa R, Domínguez-García MC, Martín A, Kilian A, Belaj A (2013) Use of DArT markers as a means of better management of the diversity of olive cultivars. Food Res Intern 54:2045–2053. doi:10.1016/j.foodres.2013.08.015

    CAS  Article  Google Scholar 

  • Barranco D, Fernández-Escobar R, Rallo L (2010) Olive growing, first English ed. Mundi-Prensa, Junta de Andalucía, Aust. Olive Assoc. Ltd., Australia

  • Belaj A, Leon L, Satovic Z, de la Rosa R (2011) Variability of wild olives (Olea europaea subsp europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Sci Hortic 129:561–569

    Article  Google Scholar 

  • Belaj A, MdC Dominguez-García, Atienza SG, Martín Urdíroz N, de la Rosa R, Satovic Z, Martín A, Kilian A, Trujillo I, Valpuesta V, Del Río C (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378

    Article  Google Scholar 

  • Bellini E, Parlati MV, Giordani E (2002) Three new olive cultivars obtained by cross-breeding. Acta Hortic 586:221–223

    Google Scholar 

  • Bellini E, Giordani E, Rosati A (2008) Genetic improvement of olive from clonal selection to cross-breeding programs. Adv Hortic Sci 22:73–86

    Google Scholar 

  • Ben Sadok I, Celton J-M, Essalouh L, Zine El Aabidine A, Garcia G, Martinez S, Grati-Kamoun N, Rebai A, Costes E, Khadari B (2013a) QTL mapping of flowering and fruiting traits in olive. PLoS ONE 8(5):e62831

    CAS  PubMed  Article  Google Scholar 

  • Ben Sadok I, Moutier N, Garcia G, Dosba F, Grati-Kamoun N, Rebai A, Khadari B, Costes E (2013b) Genetic determinism of the vegetative and reproductive traits in an F1 olive tree progeny: evidence of tree ontogeny effect. Tree Genet Genomes 9:205–221

    Article  Google Scholar 

  • Biton I, Shevtsov S, Ostersetzer O, Mani Y, Lavee S, Avidan B, Ben-ari G (2012) Genetic relationships and hybrid vigour in olive (Olea europaea L.) by microsatellites. Plant Breed 131:767–774

    CAS  Article  Google Scholar 

  • Blas AL, Yu Q, Veatch OJ, Paull RE, Moore PH, Ming R (2012) Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya. Mol Breed 29:457–466

    Article  Google Scholar 

  • Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep 30:449–462

    CAS  PubMed  Article  Google Scholar 

  • Brown S (2012) Apple. In: Badenes ML, Byrne DH (eds) Fruit breeding. Springer, New York, pp 329–368

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conneally PM, Edwards JH, Kidd KK, Lalouel J-M, Morton NE, Ott J, White R (1985) Report of the committee on methods of linkage analysis and reporting. Cytogenet Cell Genet 40:356–359

    CAS  PubMed  Article  Google Scholar 

  • Dabbou S, Rjiba I, Echbili A, Gazzah N, Mechri B, Hammami M (2010) Effect of controlled crossing on the triglyceride and fatty acid composition of virgin olive oils. Chem Biodivers 7:1801–1813

    CAS  PubMed  Article  Google Scholar 

  • de la Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Bervillé A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282

    PubMed  Google Scholar 

  • De la Rosa R, James CM, Tobutt KR (2004) Using microsatellites for paternity testing in olive progenies. HortSci 39:351–354

    Google Scholar 

  • De la Rosa R, Kiran AI, Barranco D, León L (2006) Seedling vigour as preselection criterion for short juvenile period in olive breeding. Aust J Agric Res 57:477–481

    Article  Google Scholar 

  • De la Rosa R, Leon E, Moreno I, Barranco D, Rallo L (2008) Ripening time and fruit characteristics of advanced olive selections for oil production. Aust J Agric Res 59:46–51

    Article  Google Scholar 

  • de la Rosa R, Talhaoui N, Rouis H, Velasco L, León L (2013) Fruit characteristics and fatty acid composition in advanced olive breeding selections along the ripening period. Food Res Internat. doi:10.1016/j.foodres.2013.08.039

  • de la Rosa R, Talhaoui N, Rouis H, Velasco L, León L (2013) Fruit characteristics and fatty acid composition in advanced olive breeding selections along the ripening period. Food Res Internat 54:1890–1896. doi:10.1016/j.foodres.2013.08.039

    Google Scholar 

  • del Río C, Caballero JM, García-Fernández MD (2005) Rendimiento graso de la aceituna. In: Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I (eds) Variedades de olivo en España. Junta de Andalucía-MAPA-Ediciones Mundi-Prensa, Madrid, pp 347–356

    Google Scholar 

  • Díez CM, Imperato A, Rallo L, Barranco D, Trujillo I (2012) Worldwide core collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci 52:211–221

    Article  Google Scholar 

  • Dirlewanger E, Arús P (2008) Markers in fruit tree breeding: improvement of peach. In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement, Springer, Berlin, pp 279–302

  • Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, Francois P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Peros J-P, This P (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol 13:217

    PubMed Central  PubMed  Article  Google Scholar 

  • Domínguez-García MC, Belaj A, De la Rosa R, Satovic Z, Heller-Uszynska K, Kilian A, Martín A, Atienza SG (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Sci Hortic 136:50–60

    Article  Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Article  Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204

    Article  Google Scholar 

  • El Bakkali A, Haouane H, Moukhli A, Costes E, Van Damme P, Khadari B (2013) Construction of core collections suitable for association mapping to optimize use of mediterranean olive (Olea europaea L.) genetic resources. PLoS ONE 8:e61265

    PubMed Central  PubMed  Article  Google Scholar 

  • Fanizza G (1982) Genetic variability and fruit character associations in table olives (Olea europaea L.). Rivista della Ortoflorofrutticoltura Italiana 66:115–119

    Google Scholar 

  • FAOSTAT (2011) http://faostat3.fao.org/home/index.html#DOWNLOAD

  • Fernández i Martí A, Font i Forcada C, Socias i Company R (2013) Genetic analysis for physical nut traits in almond. Tree Genet Genomes 9:455–465

    Google Scholar 

  • Fernández-Ocaña A, García-López MC, Jiménez-Ruiz J, Saniger L, Macías D, Navarro F, Oya R, Belaj A, de la Rosa R, Corpas FJ, Barroso JB, Luque F (2010) Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genet Genomes 6:891–903

    Article  Google Scholar 

  • Font i Forcada C, Fernández i Martí A, Socias i Company R (2012) Mapping quantitative trait loci for kernel composition in almond. BMC Genet 13:47

    Google Scholar 

  • Fontanazza G, Bartolozzi F, Vergari G (1998) Fs-17. Rivista Frutticoltura 5:61

    Google Scholar 

  • Frías L, García-Ortiz A, Hermoso M, Jiménez A, Llavero del Pozo MP, Morales J, Ruano T, Uceda M (1991) Analistas de laboratorio de almazara. Informaciones Técnicas, 6/91

  • González-Plaza JJ (2013) Desarrollo de herramientas genómicas en olivo y aplicación al estudio de la arquitectura. University of Málaga, Málaga

    Google Scholar 

  • Gutiérrez N, Palomino C, Satovic Z, Ruiz-Rodríguez MD, Vitale S, Gutiérrez MV, Rubiales D, Kharrat M, Amri M, Emeran AA, Cubero JI, Atienza SG, Torres AM, Avila CM (2013) QTLs for Orobanche spp. resistance in faba bean: identification and validation across different environments. Mol Breed 32:909–922

    Google Scholar 

  • Imai I, Kimball JA, Conway B, Yeater KM, McCouch SR, McClung A (2013) Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice. Mol Breed 32:101–120

    CAS  Article  Google Scholar 

  • Jansen RC (1993) Interval mapping of multipli quantitative trait loci. Genetics 135:205–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen RC (1994) Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138:871–881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khadari B, Zine El Aabidine A, Grout C, Ben Sadok I, Doligez A, Moutier N, Santoni S, Costes E (2010) A genetic linkage map of olive based on amplified fragment length polymorphism, intersimple sequence repeat and simple sequence repeat markers. J Am Soc Hortic Sci 135:548–555

    Google Scholar 

  • Knott SA, Neale DB, Sewell MM, Haley CS (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavee S, Avidan B (2012) Aspects of female heredity in the breeding progeny of different olive cultivars. In: VI international symposium on olive growing, vol 949, pp 85–92

  • Lavee S, Avidan B, Ben-Tal Y (1982) Effect of fruit size and yield on the fruit-removal-force within and between olive cultivars. Sci Hortic 17:27–32

    Google Scholar 

  • Lavee S, Haskal A, Wodner M (1986) ‘Barnea’ a new olive cultivar from first breeding generation. Olea 17:95–99

    Google Scholar 

  • Lavee S, Avidan N, Haskal A, Ogrodovich A (1996) Juvenility period reduction in olive seedlings—a tool for enhancement of breeding. Olivae 60:33–41

    Google Scholar 

  • Lavee S, Harshemesh H, Haskal A, Avidan B, Ogrodovich A, Avidan N, Trapero A (1999) ‘Maalot’, a new cultivar for oil extraction resistant to Spilocaea oleagina (Cast.). Acta Hortic 474:125–128

    Google Scholar 

  • Lavee S, Avidan N, Meni Y (2003) ‘Askal’, a new high-performing oil variety for intensive and super-intensive olive orchards. Olivae 97:53–59

    Google Scholar 

  • Lavee S, Haskal A, Avidan B (2012) The effect of planting distances and tree shape on yield and harvest efficiency of cv. Manzanillo table olives. Sci Hortic 142:166–173

    Article  Google Scholar 

  • León L, Martín LM, Rallo L (2004a) Phenotypic correlations among agronomic traits in olive progenies. J Am Soc Hortic Sci 129:271–276

    Google Scholar 

  • León L, Rallo L, Del Rio C, Martin LM (2004b) Variability and early selection on the seedling stage for agronomic traits in progenies from olive crosses. Plant Breed 123:73–78

    Article  Google Scholar 

  • León L, de La Rosa R, Barranco D, Rallo L (2005) Selection for fruit removal force and related characteristics in olive breeding progenies. Aust J Exp Agric 45:1643–1647

    Article  Google Scholar 

  • León L, de La Rosa R, Barranco D, Rallo L (2007) Breeding for early bearing in olive. HortSci 42:499–502

    Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol Biol 52:511–526

    CAS  PubMed  Article  Google Scholar 

  • Manai H, Mahjoub-Haddada F, Oueslati I, Daoud D, Zarrouk M (2008) Characterization of monovarietal virgin olive oils from six crossing varieties. Sci Hortic 115:252–260

    CAS  Article  Google Scholar 

  • Moreno-Alías I, Rapoport HF, López R, León L, de la Rosa R (2010) Optimizing early flowering and pre-selection for short juvenile period in olive seedlings. HortSci 45:519–522

    Google Scholar 

  • Muñoz-Mérida A, González-Plaza JJ, Cañada A, Blanco AM, García-López MC, Rodríguez JM, Pedrola L, Sicardo MD, Hernández ML, De la Rosa R, Belaj A, Gil-Borja M, Luque F, Martínez-Rivas JM, Pisano DG, Trelles O, Valpuesta V, Beuzón CR (2013) De novo assembly and functional annotation of the olive (Olea europaea) transcriptome. DNA Res 20:93–108

    PubMed Central  PubMed  Article  Google Scholar 

  • Padula G, Giordani E, Bellini E, Rosati A, Pandolfi S, Paoletti A, Pannelli G, Ripa V, De Rose F, Perri E, Buccoliero A, Mennone C (2008) Field evaluation of new olive (Olea europaea L.) selections and effects of genotype and environment on productivity and fruit characteristics. Adv Hortic Sci 22:87–94

    Google Scholar 

  • Picañol R, Eduardo I, Aranzana MJ, Howad W, Batlle I, Iglesias I, Alonso JM, Arús P (2013) Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 190:279–288

    Article  Google Scholar 

  • Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8:1061–1071

    Article  Google Scholar 

  • Rallo L, Barranco D (2008) ‘Chiquitita’ olive. HortSci 43:529–531

    Google Scholar 

  • Rallo P, Jiménez R, Ordovás J, Suárez MP (2008) Possible early selection of short juvenile period olive plants based on seedling traits. Aust J Agric Res 59:933–940

    Article  Google Scholar 

  • Ripa V, De Rose F, Caravita MA, Parise MR, Perri E, Rosati A, Pandolfi S, Paoletti A, Pannelli G, Padula G, Giordani E, Bellini E, Buccoliero A, Mennone C (2008) Qualitative evaluation of olive oils from new olive selections and effects of genotype and environment on oil quality. Adv Hortic Sci 22:95–103

    Google Scholar 

  • Rjiba I, Dabbou S, Gazzah N, Hammami M (2010) Effect of crossbreeding on the chemical composition and biological characteristics of Tunisian new olive progenies. Chem Biodivers 7:649–655

    CAS  PubMed  Article  Google Scholar 

  • Santos-Antunes AF, León L, de la Rosa R, Alvarado J, Mohedo A, Trujillo I, Rallo L (2005) The length of the juvenile period in olive as influenced by vigor of the seedlings and the precocity of the parents. HortSci 40:1213–1215

    Google Scholar 

  • Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). Physical wood properties. Theor Appl Genet 101:1273–1281

    CAS  Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Socquet-Juglard D, Duffy B, Pothier JF, Christen D, Gessler C, Patocchi A (2013) Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot. Tree Genet Genomes 9:409–421

    Article  Google Scholar 

  • Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Lin-Wang K, Allan AC, Gardiner SE, Chagné D, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832

    Article  Google Scholar 

  • Stelkens R, Seehausen O (2009) Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63:884–897

    PubMed  Article  Google Scholar 

  • Thompson JP, Seymour NP (2011) Inheritance of resistance to root-lesion nematode (Pratylenchus thornei) in wheat landraces and cultivars from the West Asia and North Africa (WANA) region. Crop Pasture Sci 62:82–93

    Article  Google Scholar 

  • van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus x domestica Borkh.). Tree Genet Genomes 6:489–502

    Article  Google Scholar 

  • van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811

    PubMed  Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2000) MapQTL™ version 4.0: software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  PubMed  Article  Google Scholar 

  • Wilson JN, Baring MR, Burow MD, Rooney WL, Simpson CE (2013) Generation means analysis of oil concentration in peanut. J Crop Improv 27:85–95

    CAS  Article  Google Scholar 

  • Wu SB, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47:26–35

    CAS  PubMed  Article  Google Scholar 

  • Zeinanloo A, Shahsavari A, Mohammadi A, Naghavi MR (2009) Variance component and heritability of some fruit characters in olive (Olea europaea L.). Sci Hortic 123:68–72

    Article  Google Scholar 

  • Zhang GR, Sebolt AM, Sooriyapathirana SS, Wang DC, Bink M, Olmstead JW, Iezzoni AF (2010) Fruit size QTL analysis of an F-1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36

    CAS  Article  Google Scholar 

  • Zhang RP, Wu J, Li XG, Khan MA, Chen H, Korban SS, Zhang SL (2013) An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol Biol Rep 31:678–687

    CAS  Article  Google Scholar 

  • Zine El Aabidine AZ, Charafi J, Grout C, Doligez A, Santoni S, Moukhli A, Jay-Allemand C, El Modafar C, Khadari B (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50:2291–2302

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by OLEAGEN Project funded by Fundación Genoma España, Junta de Andalucía through Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) and Corporación Tecnológica de Andalucía (CTA). A Belaj has got a postdoctoral INIA contract (Subprograma DOC-INIA) National Institute of Agricultural Research (INIA), Ministry of Education and Culture, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Atienza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2014_70_MOESM1_ESM.docx

Supplementary material 1

Frequency distribution of the fifteen traits studied for the individuals of the ‘Picual’ x ‘Arbequina’ population. Season 2008-2009. Abbreviations of the traits are shown in Table 1. Values for parents are indicated by arrows (filled indicate ‘Picual’; unfilled indicate ‘Arbequina’). (DOCX 55 kb)

11032_2014_70_MOESM2_ESM.docx

Supplementary material 2

Frequency distribution of the fourteen traits studied for the individuals of the ‘Picual’ x ‘Arbequina’ population. Season 2010-2011. Abbreviations of the traits are shown in Table 1. Values for parents are indicated by arrows (filled indicate ‘Picual’; unfilled indicate ‘Arbequina’). (DOCX 53 kb)

Supplementary material 3

Interactions between the QTL detected on Arb_10 and Arb_1 for OCFFw_1011 (A), OCPFW_1011 (B); PM_1011 (C); Arb_17 and Arb_1 for FM_1011 (D); Arb_17 and Arb_11 (P/SFW_0809). For each interaction, the x axis shows the genotypes at the QTL validated over both seasons. The y axis shows the mean progeny values considering the genotypes at the second QTL. For each graph (A-E), means denoted with different letters indicate significant differences at P < 0.05 using Tukey HSD test. (PPTX 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Atienza, S.G., de la Rosa, R., León, L. et al. Identification of QTL for agronomic traits of importance for olive breeding. Mol Breeding 34, 725–737 (2014). https://doi.org/10.1007/s11032-014-0070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0070-y

Keywords

  • Breeding
  • Fruit weight
  • Oil content
  • Olive
  • QTL
  • Trunk diameter