Skip to main content
Log in

Rice LIM protein OsPLIM2a is involved in rice seed and tiller development

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Yield of major monocotyledonous crops including wheat, rice, barley, and sorghum is greatly influenced by tillering. However, deciphering the underlying mechanisms of the tillering has long been hindered because many changeable factors are involved in the process. Plant two LIM-domain-containing proteins bind to and stabilize actin filaments that are major constituents in the formation of higher-order actin cytoskeleton. Here, we report that rice LIM-domain protein, OsPLIM2a, is involved in rice tillering likely through actin cytoskeleton organization. OsPLIM2 genes (OsPLIM2a, OsPLIM2b, and OsPLIM2c) expressed in reproductive organs including anthers, but not in other tissues. Analysis of both OsPLIM2a and OsPLIM2c promoter fused to GUS reporter revealed that both promoters directed strong and specific GUS expression in pollens. Transient expression of OsPLIM2a-GFP and OsPLIM2c-GFP in tobacco leaves showed that OsPLIM2a and OsPLIM2c could bind to actin filaments, which is consistent with other plant LIM proteins with actin-binding property. To examine further physiological roles of rice OsPLIM2a and OsPLIM2c, transgenic rice plants with 35S:OsPLIM2a or 35S:OsPLIM2c were examined for any phenotypic changes. Transgenic plants overexpressing OsPLIM2a produced bigger seeds than wild type, whereas they exhibited reduction in tiller numbers. These results suggest that OsPLIM2a may participate positively in seed development but negatively in tiller differentiation. Protein interaction assays using OsPLIM2c proteins revealed that OsPLIM2c interacted with at least three proteins including rice Fimbrin, of which homologs in Arabidopsis play crucial roles in pollen tube growth, implying that rice OsPLIM2c and Fimbrin may exert roles together in pollen tube growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnaud D, Dejardin A, Leple JC, Lesage-Descauses MC, Pilate G (2007) Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa. DNA Res 14:103–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arnaud D, Dejardin A, Leple JC, Lesage-Descauses MC, Boizot N, Villar M, Benedetti H, Pilate G (2012) Expression analysis of LIM gene family in poplar, toward an updated phylogenetic classification. BMC Res Notes 5:102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bach I (2000) The LIM domain: regulation by association. Mech Dev 91:5–17

    Article  CAS  PubMed  Google Scholar 

  • Baltz R, Domon C, Pillay DT, Steinmetz A (1992) Characterization of a pollen-specific cDNA from sunflower encoding a zinc finger protein. Plant J 2:713–721

    CAS  PubMed  Google Scholar 

  • Bao C, Wang J, Zhang R, Zhang B, Zhang H, Zhou Y, Huang S (2012) Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. Plant J 71:962–975

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Duan QH, Costa SS, de Graaf BH, Di Stilio VS, Feijo J, Wu HM (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1:686–702

    Article  CAS  PubMed  Google Scholar 

  • Coutu C, Brandle J, Brown D, Brown K, Miki B, Simmonds J, Hegedus DD (2007) pORE: a modular binary vector series suited for both monocot and dicot plant transformation. Transgenic Res 16:771–781

    Article  CAS  PubMed  Google Scholar 

  • Deeks MJ, Fendrych M, Smertenko A, Bell KS, Oparka K, Cvrckova F, Zarsky V, Hussey PJ (2010) The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J Cell Sci 123:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S (2006) Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 18:1438–1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eliasson A, Gass N, Mundel C, Baltz R, Krauter R, Evrard JL, Steinmetz A (2000) Molecular and expression analysis of a LIM protein gene family from flowering plants. Mol Gen Genet 264:257–267

    Article  CAS  PubMed  Google Scholar 

  • Feuerstein R, Wang X, Song D, Cooke NE, Liebhaber SA (1994) The LIM/double zinc-finger motif functions as a protein dimerization domain. Proc Natl Acad Sci U S A 91:10655–10659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu Y, Vernoud V, Fu Y, Yang Z (2003) ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101

    Article  CAS  PubMed  Google Scholar 

  • Ingouff M, Fitz Gerald JN, Guerin C, Robert H, Sorensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F (2005) Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 7:374–380

    Article  CAS  PubMed  Google Scholar 

  • Jang IC, Choi WB, Lee KH, Song SI, Nahm BH, Kim JK (2002) High-level and ubiquitous expression of the rice cytochrome c gene OsCc1 and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Physiol 129:1473–1481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kebrom TH, Spielmeyer W, Finnegan EJ (2013) Grasses provide new insights into regulation of shoot branching. Trends Plant Sci 18:41–48

    Article  CAS  PubMed  Google Scholar 

  • Kim CY, Bove J, Assmann SM (2008) Overexpression of wound-responsive RNA-binding proteins induces leaf senescence and hypersensitive-like cell death. New Phytol 180:57–70

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Han SY, Shin D, Jeon SA, Byun MO (2012) Optimization of Agrobacterium-mediated Transformation in Japonica-type Rice Oryza sativa L. cv. Dongjin for high efficiency. Korean J Breed Sci 44:221–228

    Google Scholar 

  • Koch BJ, Ryan JF, Baxevanis AD (2012) The diversification of the LIM superclass at the base of the metazoa increased subcellular complexity and promoted multicellular specialization. PLoS ONE 7:e33261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moes D, Gatti S, Hoffmann C, Dieterle M, Moreau F, Neumann K, Schumacher M, Diederich M, Grill E, Shen WH, Steinmetz A, Thomas C (2013) A LIM domain protein from tobacco involved in actin-bundling and histone gene transcription. Mol Plant 6:483–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F, Tholl S, Steinmetz A, Thomas C (2010) Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. Plant Cell 22:3034–3052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pittman YR, Kandl K, Lewis M, Valente L, Kinzy TG (2009) Coordination of eukaryotic translation elongation factor 1A (eEF1A) function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Balpha. J Biol Chem 284:4739–4747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su H, Zhu J, Cai C, Pei W, Wang J, Dong H, Ren H (2012) FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe. Plant Cell 24:4539–4554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas C, Hoffmann C, Dieterle M, Van Troys M, Ampe C, Steinmetz A (2006) Tobacco WLIM1 is a novel F-actin binding protein involved in actin cytoskeleton remodeling. Plant Cell 18:2194–2206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas C, Hoffmann C, Gatti S, Steinmetz A (2007) LIM proteins: a novel class of actin cytoskeleton organizers in plants. Plant Signal Behav 2:99–100

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas C, Dieterle M, Gatti S, Hoffmann C, Moreau F, Papuga J, Steinmetz A (2008) Actin bundling via LIM domains. Plant Signal Behav 3:320–321

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A (2009) Actin bundling in plants. Cell Motil Cytoskelet 66:940–957

    Article  CAS  Google Scholar 

  • van der Honing HS, Kieft H, Emons AM, Ketelaar T (2012) Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. Plant Physiol 158:1426–1438

    Article  PubMed Central  PubMed  Google Scholar 

  • Vidali L, van Gisbergen PA, Guerin C, Franco P, Li M, Burkart GM, Augustine RC, Blanchoin L, Bezanilla M (2009) Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc Natl Acad Sci U S A 106:13341–13346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J Cell Mol Biol 56:505–516

    Article  CAS  Google Scholar 

  • Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J Cell Mol Biol 40:428–438

    Article  CAS  Google Scholar 

  • Wang HJ, Wan AR, Jauh GY (2008) An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiol 147:1619–1636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Y, Yan J, Zhang R, Qu X, Ren S, Chen N, Huang S (2010) Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. Plant Cell 22:3745–3763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang W, Ren S, Zhang X, Gao M, Ye S, Qi Y, Zheng Y, Wang J, Zeng L, Li Q, Huang S, He Z (2011) BENT UPPERMOST INTERNODE1 encodes the class II formin FH5 crucial for actin organization and rice development. Plant Cell 23:661–680

    Google Scholar 

  • Ye JR, Zhou LM, Xu ML (2013) Arabidopsis LIM proteins PLIM2a and PLIM2b regulate actin configuration during pollen tube growth. Biol Plant 57(3):433–441

    Google Scholar 

  • Zhang H, Qu X, Bao C, Khurana P, Wang Q, Xie Y, Zheng Y, Chen N, Blanchoin L, Staiger CJ, Huang S (2010) Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 22:2749–2767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Q, Zhao Y (2007) The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein–protein interaction. Biol Cell 99:489–502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, Grant#: No. PJ00951407), Research Program for Agricultural Science and Technology Development (Project No. PJ008677), and Postdoctoral Fellowship Program of National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dool-Yi Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, JK., Huh, SM., Yoon, IS. et al. Rice LIM protein OsPLIM2a is involved in rice seed and tiller development. Mol Breeding 34, 569–581 (2014). https://doi.org/10.1007/s11032-014-0058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0058-7

Keywords

Navigation