Molecular Breeding

, Volume 34, Issue 2, pp 537–548 | Cite as

Use of VeraCode 384-plex assays for watermelon diversity analysis and integrated genetic map of watermelon with single nucleotide polymorphisms and simple sequence repeats

  • Padma Nimmakayala
  • Venkata Lakshmi Abburi
  • Abhishek Bhandary
  • Lavanya Abburi
  • Venkata Gopinath Vajja
  • Rishi Reddy
  • Sridhar Malkaram
  • Pegadaraju Venkatramana
  • Asela Wijeratne
  • Yan R. Tomason
  • Amnon Levi
  • Todd C. Wehner
  • Umesh K. Reddy
Article

Abstract

Watermelon (Citrullus lanatus var. lanatus) is one of the most important vegetable crops in the world. Molecular markers have become the tools of choice for resolving watermelon taxonomic relationships and evolution. Increased numbers of single nucleotide polymorphism (SNP) markers together with simple sequence repeat (SSR) markers would be useful for phylogenetic analyses of germplasm accessions and for linkage mapping for marker-assisted breeding with quantitative trait loci and single genes. We aimed to construct a genetic map based on SNPs (generated by Illumina Veracode multiplex assays for genotyping) and SSR markers and evaluate relationships inferred from SNP genotypes between 130 watermelon accessions collected throughout the world. We incorporated 282 markers (232 SNPs and 50 SSRs) into the linkage map. The genetic map consisted of 11 linkage groups spanning 924.72 cM with an average distance of 3.28 cM between markers. Because all of the SNP-containing sequences were assembled with the whole-genome sequence draft for watermelon, chromosome numbers could be readily assigned for all the linkage groups. We found that 134 SNPs were polymorphic in 130 watermelon accessions chosen for diversity studies. The current 384-plex SNP set is a powerful tool for characterizing genetic relatedness and for developing medium-resolution genetic maps.

Keywords

SNPs High throughput genotyping SSRs Genetic mapping Watermelon Cultivar diversity 

Supplementary material

11032_2014_56_MOESM1_ESM.png (44 kb)
Supplementary material 1 GO annotation for biological processes (PNG 44 kb)
11032_2014_56_MOESM2_ESM.png (38 kb)
Supplementary material 2 GO annotation for at molecular functions (PNG 38 kb)
11032_2014_56_MOESM3_ESM.png (46 kb)
Supplementary material 3 GO annotation for cellular contents (PNG 46 kb)
11032_2014_56_MOESM4_ESM.tif (9.9 mb)
Supplementary material 4 Neighbor-joining phenogram depicting diversity of watermelon accessions (TIFF 10102 kb)
11032_2014_56_MOESM5_ESM.tif (131 kb)
Supplementary material 5 PCA of the first 2 components of African cultivated watermelon collections (TIFF 131 kb)
11032_2014_56_MOESM6_ESM.xlsx (14 kb)
Supplementary material 6 (XLSX 14 kb)
11032_2014_56_MOESM7_ESM.xlsx (61 kb)
Supplementary material 7 (XLSX 61 kb)
11032_2014_56_MOESM8_ESM.xlsx (21 kb)
Supplementary material 8 (XLSX 20 kb)

References

  1. Aslam M, Bastiaansen J, Elferink M, Megens H-J, Crooijmans R, Blomberg L, Fleischer R, Van Tassell C, Sonstegard T, Schroeder S, Groenen M, Long J (2012) Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC Genom 13(1):391CrossRefGoogle Scholar
  2. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376. doi:10.1371/journal.pone.0003376
  3. Berlin S, Lagercrantz U, von Arnold S, Ost T, Ronnberg-Wastljung A (2010) High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus. BMC Genom 11(1):129CrossRefGoogle Scholar
  4. Cavagnaro P, Senalik D, Yang L, Simon P, Harkins T, Kodira C, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11(1):569CrossRefGoogle Scholar
  5. Cavagnaro P, Chung S-M, Manin S, Yildiz M, Ali A, Alessandro M, Iorizzo M, Senalik D, Simon P (2011) Microsatellite isolation and marker development in carrot—genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genom 12(1):386CrossRefGoogle Scholar
  6. Cordoba J, Chavarro C, Schlueter J, Jackson S, Blair M (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genom 11(1):436CrossRefGoogle Scholar
  7. Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54(6):1255–1265. doi:10.1007/s10722-006-9107-3 CrossRefGoogle Scholar
  8. Deschamps S, Campbell M (2010) Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 25(4):553–570. doi:10.1007/s11032-009-9357-9 CrossRefGoogle Scholar
  9. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379. doi:10.1371/journal.pone.0019379 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Ersoz ES, Wright MH, Pangilinan JL, Sheehan MJ, Tobias C, Casler MD, Buckler ES, Costich DE (2012) SNP discovery with EST and NextGen sequencing in switchgrass (Panicum virgatum L.). PLoS ONE 7(9):e44112. doi:10.1371/journal.pone.0044112 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Esteras C, Gomez P, Monforte A, Blanca J, Vicente-Dolera N, Roig C, Nuez F, Pico B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom 13(1):80CrossRefGoogle Scholar
  12. Fursa T (1972) K Sistematike roda citrullus schrad. Bot Z 57(1):31–41Google Scholar
  13. Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, Hansen M, Joets J, Le Paslier M-C, McMullen MD, Montalent P, Rose M, Schön C–C, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6(12):e28334. doi:10.1371/journal.pone.0028334 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Guner N, Wehner TC (2004) The genes of watermelon. HortScience 39(6):1175–1182Google Scholar
  15. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58. doi:10.1038/ng.2470 PubMedCrossRefGoogle Scholar
  16. Hansey CN, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Buell CR (2012) Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing. PLoS ONE 7(3):e33071. doi:10.1371/journal.pone.0033071 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jarret RL, Merrick LC, Holms T, Evans J, Aradhya MK (1997) Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Genome/National Research Council Canada—Genome/Conseil national de recherches Canada 40(4):433–441Google Scholar
  18. Levi A, Thomas C, Keinath A, Wehner T (2001) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48(6):559–566. doi:10.1023/a:1013888418442 CrossRefGoogle Scholar
  19. Levi A, Thomas E, Joobeur T, Zhang X, Davis A (2002) A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var. citroides × C. lanatus var. lanatus) × Citrullus colocynthis. Theor Appl Genet 105(4):555–563. doi:10.1007/s00122-001-0860-6 PubMedCrossRefGoogle Scholar
  20. Levi A, Thies J, Wechter WP, Harrison H, Simmons A, Reddy U, Nimmakayala P, Fei Z (2013) High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet Resour Crop Evol 60(2):427–440. doi:10.1007/s10722-012-9845-3 CrossRefGoogle Scholar
  21. Li Q, Li P, Sun L, Wang Y, Ji K, Sun Y, Dai S, Chen P, Duan C, Leng P (2012) Expression analysis of beta-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions. J Plant Physiol 169(1):78–85. doi:10.1016/j.jplph.2011.08.005 PubMedCrossRefGoogle Scholar
  22. Lin CH, Yeakley JM, McDaniel TK, Shen R (2009) Medium- to high-throughput SNP genotyping using VeraCode microbeads. Methods Mol Biol 496:129–142. doi:10.1007/978-1-59745-553-4_10 PubMedCrossRefGoogle Scholar
  23. Mammadov J, Chen W, Mingus J, Thompson S, Kumpatla S (2012) Development of versatile gene-based SNP assays in maize (Zea mays L.). Mol Breed 29(3):779–790. doi:10.1007/s11032-011-9589-3 CrossRefGoogle Scholar
  24. Meeuse ADJ (1962) The Cucurbitaceae of southern Africa. Bothalia 8(1):1–111Google Scholar
  25. Neves L, Mamani EMC, Alfenas A, Kirst M, Grattapaglia D (2011) A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus. BMC Genom 12(1):189CrossRefGoogle Scholar
  26. Nimmakayala P, Islam-Faridi N, Tomason Y, Lutz F, Levi A, Reddy U (2011) Citrullus. In: Wild crop relatives: genomic and breeding resources. Springer, New York, pp 59–66Google Scholar
  27. Oliver RE, Tinker NA, Lazo GR, Chao S, Jellen EN, Carson ML, Rines HW, Obert DE, Lutz JD, Shackelford I, Korol AB, Wight CP, Gardner KM, Hattori J, Beattie AD, Bjørnstad Å, Bonman JM, Jannink J-L, Sorrells ME, Brown-Guedira GL, Mitchell Fetch JW, Harrison SA, Howarth CJ, Ibrahim A, Kolb FL, McMullen MS, Murphy JP, Ohm HW, Rossnagel BG, Yan W, Miclaus KJ, Hiller J, Maughan PJ, Redman Hulse RR, Anderson JM, Islamovic E, Jackson EW (2013) SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species. PLoS ONE 8(3):e58068. doi:10.1371/journal.pone.0058068 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Parida S, Dalal V, Singh A, Singh N, Mohapatra T (2009) Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genom 10(1):140CrossRefGoogle Scholar
  29. Paris HS, Daunay M-C, Janick J (2013) Medieval iconography of watermelons in Mediterranean Europe. Ann Bot 112(5):867–879. doi:10.1093/aob/mct151 PubMedCrossRefGoogle Scholar
  30. Pegadaraju V, Nipper R, Hulke B, Qi L, Schultz Q (2013) De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genom 14(1):556. doi:10.1186/1471-2164-14-556 CrossRefGoogle Scholar
  31. Pitrat M, Chauvet M, Foury C (1999) Diversity, history and production of cultivated cucurbits. Acta Hortic 492:21–28Google Scholar
  32. Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7(2):e32253. doi:10.1371/journal.pone.0032253 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Poole C (1944) Genetics of cultivated cucurbits. J Hered 35:122–128Google Scholar
  34. Reddy U, Aryal N, Islam-Faridi N, Tomason Y, Levi A, Nimmakayala P (2013) Cytomolecular characterization of rDNA distribution in various Citrullus species using fluorescent in situ hybridization. Genet Resour Crop Evol 60(7):2091–2100. doi:10.1007/s10722-013-9976-1 CrossRefGoogle Scholar
  35. Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS ONE 7(1):e29453PubMedCentralPubMedCrossRefGoogle Scholar
  36. Robinson RW, Decker-Walters DS (1997) Cucurbits. Crop production science in horticulture, vol 6. CAB International, Wallingford, OxonGoogle Scholar
  37. Romão R (2000) Northeast Brazil: a secondary center of diversity for watermelon (Citrullus lanatus). Genet Resour Crop Evol 47(2):207–213. doi:10.1023/a:1008723706557 CrossRefGoogle Scholar
  38. Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125(8):1603–1618PubMedCrossRefGoogle Scholar
  39. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14. doi:10.1007/s11032-013-9917-x CrossRefGoogle Scholar
  40. Sim S-C, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS ONE 7(7):e40563. doi:10.1371/journal.pone.0040563 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Stagel A, Portis E, Toppino L, Rotino G, Lanteri S (2008) Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genom 9(1):357CrossRefGoogle Scholar
  42. Sun L, Yang W, Zhang Q, Cheng T, Pan H, Xu Z, Zhang J, Chen C (2013) Genome-wide characterization and linkage mapping of simple sequence repeats in Mei (Prunus mume Sieb. et Zucc.). PLoS ONE 8(3):e59562. doi:10.1371/journal.pone.0059562 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Thomson M, Zhao K, Wright M, McNally K, Rey J, Tung C-W, Reynolds A, Scheffler B, Eizenga G, McClung A, Kim H, Ismail A, Ocampo M, Mojica C, Reveche MY, Dilla-Ermita C, Mauleon R, Leung H, Bustamante C, McCouch S (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breed 29(4):875–886. doi:10.1007/s11032-011-9663-x CrossRefGoogle Scholar
  44. Tóth Zoltán GG, Szabó Z, Horváth L, Heszky L (2007) Watermelon (Citrullus l. lanatus) production in Hungary from the Middle Ages (13th century). Hung Agric Res 4:14–19Google Scholar
  45. van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93(05):343–349. doi:10.1017/S0016672311000279 CrossRefGoogle Scholar
  46. Viquez-Zamora M, Vosman B, van de Geest H, Bovy A, Visser R, Finkers R, van Heusden A (2013) Tomato breeding in the genomics era: insights from a SNP array. BMC Genom 14(1):354CrossRefGoogle Scholar
  47. Weetman L (1937) Inheritance and correlation of shape, size, and color of watermelon. Iowa Agric Exp Sta Res Bull 228:222–256Google Scholar
  48. Whitaker TW, Bemis WP (1976) Cucurbits. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 64–69Google Scholar
  49. Whitaker TW, Davis GN (1962) Cucurbits. Botany, cultivation, and utilization. Interscience Publishers, New YorkGoogle Scholar
  50. Wong M, Cannon C, Wickneswari R (2012) Development of high-throughput SNP-based genotyping in Acacia auriculiformis x A. mangium hybrids using short-read transcriptome data. BMC Genom 13(1):726CrossRefGoogle Scholar
  51. Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch J, Xu Y (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25(3):441–451. doi:10.1007/s11032-009-9343-2 CrossRefGoogle Scholar
  52. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome res 18:821–829Google Scholar
  53. Zhai R, Feng Y, Zhan X, Shen X, Wu W, Yu P, Zhang Y, Chen D, Wang H, Lin Z, Cao L, Cheng S (2013) Identification of transcriptome SNPs for assessing allele-specific gene expression in a super-hybrid rice Xieyou9308. PLoS ONE 8(4):e60668. doi:10.1371/journal.pone.0060668 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Zhang H, Wang H, Guo S, Ren Y, Gong G, Weng Y, Xu Y (2012) Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum Nakai Euphytica 186(2):329–342. doi:10.1007/s10681-011-0574-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Padma Nimmakayala
    • 1
  • Venkata Lakshmi Abburi
    • 1
  • Abhishek Bhandary
    • 1
  • Lavanya Abburi
    • 1
  • Venkata Gopinath Vajja
    • 1
  • Rishi Reddy
    • 1
  • Sridhar Malkaram
    • 1
  • Pegadaraju Venkatramana
    • 2
    • 3
  • Asela Wijeratne
    • 4
  • Yan R. Tomason
    • 1
  • Amnon Levi
    • 5
  • Todd C. Wehner
    • 6
  • Umesh K. Reddy
    • 1
  1. 1.Department of Biology, Gus R. Douglass InstituteWest Virginia State UniversityInstituteUSA
  2. 2.BioDiagnostics, IncRiver FallsUSA
  3. 3.Douglas Scientific LLCAlexandriaUSA
  4. 4.Molecular and Cellular Imagining Center, Ohio Agriculture Research and Development CenterOhio State UniversityWoosterUSA
  5. 5.U.S. Vegetable Laboratory, ARSUSDACharlestonUSA
  6. 6.Department of Horticultural ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations