Molecular Breeding

, Volume 33, Issue 2, pp 477–488 | Cite as

High-resolution mapping of the barley Ryd3 locus controlling tolerance to BYDV

  • Thomas Lüpken
  • Nils Stein
  • Dragan Perovic
  • Antje Habekuß
  • Albrecht Serfling
  • Ilona Krämer
  • Urs Hähnel
  • Burkhard Steuernagel
  • Uwe Scholz
  • Ruvini Ariyadasa
  • Mihaela Martis
  • Klaus Mayer
  • Rients E. Niks
  • Nicholas C. Collins
  • Wolfgang Friedt
  • Frank OrdonEmail author


Barley yellow dwarf disease (BYD) is transmitted by aphids and is caused by different strains of Barley yellow dwarf virus (BYDV) and Cereal yellow dwarf virus (CYDV). Economically it is one of the most important diseases of cereals worldwide. Besides chemical control of the vector, growing of tolerant/resistant cultivars is an effective way of protecting crops against BYD. The Ryd3 gene in barley (Hordeum vulgare L.) confers tolerance to BYDV-PAV and BYDV-MAV and the locus was previously mapped on the short arm of barley chromosome 6H near the centromere. We applied a strategy for high-resolution mapping and marker saturation at the Ryd3 locus by exploiting recent genomic tools available in barley. In a population of 3,210 F2 plants, 14 tightly linked markers were identified, including 10 that co-segregated with Ryd3. The centromeric region where Ryd3 is located suffers suppressed recombination or reduced recombination rate, suggesting potential problems in achieving (1) map-based cloning of Ryd3 and (2) marker selection of the resistance in breeding programmes without the introduction of undesirable traits via linkage drag.


Hordeum vulgare L. High-resolution mapping Map-based cloning Ryd3 Barley yellow dwarf virus 



The authors thank Karin Ernst and Dörte Grau (JKI) for excellent technical assistance, Susanne König (IPK) for sequencing, and Calvin Qualset (UC Davis) for generously supplying BYDV resistance field data for Ethiopian accessions. The research was supported by a grant of the Federal Ministry of Education and Research (BMBF) (project BARLEX: FKZ 0314000) to KFXM, FO and NS. We are grateful to the BMBF for funding this project and to the ARC, GRDC and the South Australian Government for funding N. Collins.

Supplementary material

11032_2013_9966_MOESM1_ESM.xls (34 kb)
Supplementary material 1 (XLS 34 kb)


  1. Arundel PH, Van de Velde R, Holloway PJ (1988) Optimal conditions for the use of cDNA probes to measure the concentration of barley yellow dwarf virus in barley (Hordeum vulgare). J Virol Methods 19:307–318PubMedCrossRefGoogle Scholar
  2. Banks PM, Waterhouse PM, Larkin PJ (1992) Pathogenicity of 3 RPV isolates of Barley yellow dwarf virus on barley, wheat and wheat alien addition lines. Ann Appl Biol 121:305–314CrossRefGoogle Scholar
  3. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333PubMedCrossRefGoogle Scholar
  4. Burnett PA, Comeau A, Qualset CO (1995) Host plant tolerance or resistance for control of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley Yellow Dwarf: 40 years of progress. APS Press, St. Paul, pp 321–343Google Scholar
  5. Catherall PL, Jones AT, Hayes JD (1970) Inheritance and effectiveness of genes in barley that condition tolerance to barley yellow dwarf virus. Ann Appl Biol 65:153–161CrossRefGoogle Scholar
  6. Chalhoub BA, Sarrafi A, Lapierre HD (1995) Partial resistance in the barley (Hordeum vulgare L) cultivar ‘Chikurin-Ibaraki-1’ to two PAV-like isolates of Barley yellow dwarf virus: allelic variability at the Yd2 gene locus. Plant Breed 114:303–307CrossRefGoogle Scholar
  7. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582PubMedCentralPubMedCrossRefGoogle Scholar
  8. Collins NC, Paltridge NG, Ford CM, Symons RH (1996) The Yd2 gene for barley yellow dwarf virus resistance maps close to the centromere on the long arm of barley chromosome 3. Theor Appl Genet 92:858–864PubMedCrossRefGoogle Scholar
  9. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392PubMedCrossRefGoogle Scholar
  10. Damsteegt VD, Bruehl GW (1964) Inheritance of resistance in barley to barley yellow dwarf. Phytopathology 54:219–224Google Scholar
  11. Domier LL (2008) Barley yellow dwarf virus. In: Mahy BWJ, van Regenmortal MHV (eds) Encyclopedia of virology. Elsevier, Oxford, pp 279–286CrossRefGoogle Scholar
  12. Dorokhov DB, Klocke E (1997) A rapid and economic technique for RAPD analysis of plant genomes. Russ J Gen 33:358–365Google Scholar
  13. Ford CM, Paltridge NG, Rathjen JP, Moritz RL, Simpson RJ, Symons RH (1998) Rapid and informative assays for Yd2, the Barley yellow dwarf virus resistance gene, based on the nucleotide sequence of a closely linked gene. Mol Breed 4:23–31CrossRefGoogle Scholar
  14. Galloway BT, Southword EA (1890) Preliminary notes on a new and destructive oat disease. J Mycol 6:72–73CrossRefGoogle Scholar
  15. Habekuß A (2012) Gerstengelbverzwergung—ein vermeidbares Problem? Praxisnah. Fachinformationen für die Landwirtschaft 2:4–5Google Scholar
  16. Habekuß A, Riedel C, Schliephake E, Ordon F (2009) Breeding for resistance to insect-transmitted viruses in barley—an emerging challenge due to global warming. J Cultiv Plants 61:53–61Google Scholar
  17. Han F, Kilian A, Chen JP, Kudrna D, Steffenson B, Yamamoto K, Matsumoto T, Sasaki T, Kleinhofs A (1999) Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 42:1071–1076PubMedGoogle Scholar
  18. Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507–1522PubMedCrossRefGoogle Scholar
  19. Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391PubMedCrossRefGoogle Scholar
  20. Huth W (1993) Untersuchungen zum Verhalten mehrerer Sorten Wintergerste nach Inokulation mit dem Gelbverzwergungsvirus der Gerste (barley yellow dwarf virus). Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 100:371–378Google Scholar
  21. Jones AT, Catherall PL (1970) The effect of different virus isolates on the expression of tolerance to barley yellow dwarf virus in barley. Ann Appl Biol 65:147–152CrossRefGoogle Scholar
  22. Kanyuka K, Druka A, Caldwell DG, Tymon A, McCallum N, Waugh R, Adams MJ (2005) Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol Plant Pathol 6:449–458PubMedCrossRefGoogle Scholar
  23. Kennedy TF, Connery J (2011) Control of barley yellow dwarf virus in minimum-till and conventional-till autumn-sown cereals by insecticide seed and foliar spray treatments. J Agric Sci 150:249–262CrossRefGoogle Scholar
  24. Komatsuda T, Tanno K (2004) Comparative high resolution map of the six-rowed spike locus 1 (vrs1) in several populations of barley, Hordeum vulgare L. Hereditas 141:68–73PubMedCrossRefGoogle Scholar
  25. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Masahiro YM (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429PubMedCrossRefGoogle Scholar
  26. Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedGoogle Scholar
  27. Le Gall O, Aranda MA, Caranta C (2011) Plant resistance to viruses mediated by translation initiation factors. In: Caranta C, Aranda MA, Tepfer M, Lopez-Moya JJ (eds) Recent advances in plant virology. Caister Academic Press, Norfolk, pp 177–194Google Scholar
  28. Ling HQ, Zhu Y, Keller B (2003) High-resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterization of BAC clones from the Lr1 locus. Theor Appl Genet 106:875–882PubMedGoogle Scholar
  29. Lister RM, Ranieri R (1995) Distribution and economic importance of Barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley Yellow Dwarf: 40 years of progress. APS Press, St. Paul, pp 29–53Google Scholar
  30. Lucas SJ, Akpınar BA, Kantar M, Weinstein Z, Aydınoğlu F, Safář J, Simková H, Frenkel Z, Korol A, Magni F, Cattonaro F, Vautrin S, Bellec A, Bergès H, Doležel J, Budak H (2013) Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A. PLoS One 8(4):e59542. doi: 10.1371/journal.pone.0059542
  31. Lüpken T, Stein N, Perovic D, Habekuß A, Krämer I, Hähnel U, Steuernagel B, Scholz U, Zhou R, Ariyadasa R, Taudien S, Platzer M, Martis M, Mayer K, Friedt W, Ordon F (2013) Genomics-based high-resolution mapping of the BaMMV/BaYMV resistance gene rym11 in barley (Hordeum vulgare L.). Theor Appl Genet 126:1201–1212PubMedCrossRefGoogle Scholar
  32. Ma Z, Weining S, Sharp PJ, Liu C (2000) Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucl Acids Res 28:e106. doi: 10.1093/nar/28.24.e106 PubMedCrossRefGoogle Scholar
  33. Maher B (2009) Exome sequencing takes centre stage in cancer profiling. Nature 459:146–147PubMedCrossRefGoogle Scholar
  34. Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500PubMedCrossRefGoogle Scholar
  35. Mayer KFX, Martis M, Hedley PE, Kimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doleqel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263PubMedCentralPubMedCrossRefGoogle Scholar
  36. Niks RE, Habekuss A, Bekele B, Ordon F (2004) A novel major gene on chromosome 6H for resistance of barley against the Barley yellow dwarf virus. Theor Appl Genet 109:1536–1543PubMedCrossRefGoogle Scholar
  37. Oswald JW, Houston BR (1951) A new virus disease of cereals transmissible by aphids. Plant Dis Rep 35:471–475Google Scholar
  38. Ovesná J, Vacke J, Kučera L, Chrpová J, Nováková I, Jahoor A, Šíp V (2000) Genetic analysis of resistance in barley to barley yellow dwarf virus. Plant Breed 119:481–486CrossRefGoogle Scholar
  39. Paltridge NG (1998) The development of molecular markers for barley Yd2, the barley yellow dwarf virus resistance gene. PhD thesis, The University of Adelaide, Dept of Plant ScienceGoogle Scholar
  40. Pellio B, Streng S, Bauer E, Stein N, Perovic D, Schiemann A, Friedt W, Ordon F, Graner A (2005) High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp. vulgare L.). Theor Appl Genet 110:283–293PubMedCrossRefGoogle Scholar
  41. Perovic J, Silvar C, Koenig J, Stein N, Perovic D, Ordon F (2013) A versatile fluorescence-based multiplexing assay for CAPS genotyping on capillary electrophoresis systems. Mol Breed 32:61–69CrossRefGoogle Scholar
  42. Qiu JW, Schürch AC, Yahiaoui N, Dong LL, Fan HJ, Zhang ZJ, Keller B, Ling HQ (2007) Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor Appl Genet 115:159–168PubMedCrossRefGoogle Scholar
  43. Ramsay L, Macaulay M, Degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedGoogle Scholar
  44. Rasmusson DC, Schaller CW (1959) The inheritance of resistance in barley to the barley yellow dwarf virus. Agron J 51:661–664CrossRefGoogle Scholar
  45. Riedel C, Habekuß A, Schliephake E, Niks R, Broer I, Ordon F (2011) Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123:69–76PubMedCrossRefGoogle Scholar
  46. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  47. Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103:110–117PubMedCrossRefGoogle Scholar
  48. Sayed H, Kumari S, Baum M, Ghulam W, Grando S, Makkouk K (2006) Marker-assisted selection for Barley yellow dwarf virus resistance genes Yd2 and Yd3 in barley. In: Ninth Arab congress of plant protection, 19–23 November 2006, Damascus, Syria, p E-103Google Scholar
  49. Schaller CW (1984) The genetics of resistance to Barley yellow dwarf virus in barley. In: Burnett PA (ed) Barley yellow dwarf. A proceedings of the workshop. CIMMYT, Mexico, pp 93–99Google Scholar
  50. Schaller CW, Chim CI (1969) Registration of Atlas 68 barley. Crop Sci 9:521Google Scholar
  51. Schaller CW, Rasmusson DC, Qualset CO (1963) Sources of resistance to the yellow-dwarf virus in barley. Crop Sci 3:342–344CrossRefGoogle Scholar
  52. Schaller CW, Qualset CO, Rutger JN (1964) Inheritance and linkage of the Yd2 gene conditioning resistance to the Barley yellow dwarf disease in barley. Crop Sci 4:544–548CrossRefGoogle Scholar
  53. Schaller CW, Prato JD, Chim CI (1973) Registration of Sutter barley. Crop Sci 13:285CrossRefGoogle Scholar
  54. Scheurer KS, Friedt W, Huth W, Waugh R, Ordon F (2001) QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.). Theor Appl Genet 103:1074–1083CrossRefGoogle Scholar
  55. Scholz M, Ruge-Wehling B, Habekuss A, Schrader O, Pendinen G, Fischer K, Wehling P (2009) Ryd4Hb: a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the Barley yellow dwarf virus. Theor Appl Genet 119:837–849PubMedCrossRefGoogle Scholar
  56. Silvar C, Perovic D, Casas AM, Igartua E, Ordon F (2011) Development of a cost-effective pyrosequencing approach for SNP genotyping in barley. Plant Breed 130:394–397CrossRefGoogle Scholar
  57. Silvar C, Perovic D, Scholz U, Casas AM, Igartua E, Ordon F (2012) Fine mapping and comparative genomics integration of two quantitative trait loci controlling resistance to powdery mildew in a Spanish barley landrace. Theor Appl Genet 124:49–62PubMedCrossRefGoogle Scholar
  58. Skaria M, Lister RM, Foster JE, Shaner G (1985) Virus content as an index of symptomatic resistance to barley yellow dwarf virus in cereals. Phytopathology 75:212–216CrossRefGoogle Scholar
  59. Stein N, Graner A (2004) Map based gene isolation in cereal genomes. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, Dordrecht, pp 331–360Google Scholar
  60. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large genome species such as Triticum aestivum. Plant Breed 120:354–356CrossRefGoogle Scholar
  61. Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922PubMedCrossRefGoogle Scholar
  62. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Graner A (2007) A 1000 loci transcript map of the barley Genome-new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  63. Strażyński P, Ruszkowska M, Jeżewska J, Trzmiel K (2011) Evaluation of the autumn infection of winter barley with Barley yellow dwarf viruses transmitted by anholocyclic forms of bird charry-oat aphid Rhopalosiphum padi L. in Poland. J Plant Prot Res 51:314–321Google Scholar
  64. Swaminathan SS (2011) Impact of global warming on the insect pest status on plants. Indian J Sci Technol 4:230–235Google Scholar
  65. The International Barley Genome Sequencing Consortium (IBSC) (2012) A physical, genetical and functional sequence assembly of the barley genome. Nature 491:711–716Google Scholar
  66. Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol Biol 9:209PubMedCentralPubMedCrossRefGoogle Scholar
  67. Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T (2008) Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet 116:691–700PubMedCrossRefGoogle Scholar
  68. Toojinda T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Ramsay L, Vivar H, Waugh R (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet 101:580–589CrossRefGoogle Scholar
  69. van Berloo R, Aalbers H, Werkman A, Niks RE (2001) Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Mol Breed 8:187–195CrossRefGoogle Scholar
  70. Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103PubMedCrossRefGoogle Scholar
  71. Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperature zones. Appl Entomol Zool 33:289–298Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas Lüpken
    • 1
  • Nils Stein
    • 2
  • Dragan Perovic
    • 1
  • Antje Habekuß
    • 1
  • Albrecht Serfling
    • 1
  • Ilona Krämer
    • 1
  • Urs Hähnel
    • 2
  • Burkhard Steuernagel
    • 2
  • Uwe Scholz
    • 2
  • Ruvini Ariyadasa
    • 2
  • Mihaela Martis
    • 3
  • Klaus Mayer
    • 3
  • Rients E. Niks
    • 4
  • Nicholas C. Collins
    • 5
  • Wolfgang Friedt
    • 6
  • Frank Ordon
    • 1
    Email author
  1. 1.Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated PlantsInstitute for Resistance Research and Stress ToleranceQuedlinburgGermany
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt Seeland (OT) GaterslebenGermany
  3. 3.Munich Information Center for Protein Sequences/Institute of Bioinformatics and Systems Biology (MIPS/IBIS)Institute for Bioinformatics and Systems Biology, Helmholtz Center MunichNeuherbergGermany
  4. 4.Department of Plant Breeding, Graduate School of Experimental Plant SciencesWageningen UniversityWageningenThe Netherlands
  5. 5.Australian Centre for Plant Functional Genomics, School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia
  6. 6.Institute of Crop Science and Plant Breeding IJustus-Liebig-UniversityGiessenGermany

Personalised recommendations