Molecular Breeding

, Volume 33, Issue 2, pp 385–399 | Cite as

Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3

  • B. R. BasnetEmail author
  • R. P. Singh
  • A. M. H. Ibrahim
  • S. A. Herrera-Foessel
  • J. Huerta-Espino
  • C. Lan
  • J. C. Rudd


Leaf rust (LR) and yellow rust (YR), caused by Puccinia triticina and Puccinia striiformis f. sp. tritici, respectively, are important diseases of wheat. Quaiu 3, a common wheat line developed at the International Maize and Wheat Improvement Center (CIMMYT), is immune to YR in Mexico despite seedling susceptibility to predominant races. Quaiu 3 also shows immunity to LR in field trials and is known to possess the race-specific gene Lr42. A mapping population of 182 recombinant inbred lines (RILs) was developed by crossing Quaiu 3 with susceptible Avocet-YrA and phenotyped with LR and YR in field trials for 2 years in Mexico. Quantitative trait loci (QTL) associated with YR and LR resistance in the RILs were identified using Diversity Arrays Technology and simple sequence repeat markers. A large-effect QTL on the long arm of chromosome 2D explained 49–54 % of the phenotypic variation in Quaiu 3 and was designated as Yr54. Two additional loci on 1BL and 3BS explained 8–17 % of the phenotypic variation for YR and coincided with previously characterized adult plant resistance (APR) genes Lr46/Yr29 and Sr2/Yr30, respectively. QTL on 1DS and 1BL corresponding to Lr42 and Lr46/Yr29, respectively, contributed 60–71 % of the variation for LR resistance. A locus on 3D associated with APR to both diseases explained up to 7 % of the phenotypic variance. Additional Avocet-YrA-derived minor QTL were also detected for YR on chromosomes 1A, 3D, 4A, and 6A. Yr54 is a newly characterized APR gene which can be combined with other genes by using closely linked molecular markers.


RILs Markers QTL APR Yellow rust 



The authors thank Monsanto’s Beachell-Borlaug International Scholars Program (MBBISP) and SAGARPA-CONACYT of Mexico (Fondo Sectorial Project 146788) for funding. This study represents a part of the first author’s PhD dissertation researches completed at Texas A&M University, Texas, USA. Similarly, we thank Ms. Emma Quilligan for thorough English editing of this manuscript.

Supplementary material

11032_2013_9957_MOESM1_ESM.pdf (152 kb)
Supplementary material 1 (PDF 153 kb)


  1. Agenbag GM, Pretorius ZA, Boyd LA, Bender CM, Prins R (2012) Identification of adult plant resistance to stripe rust in the wheat cultivar Capelle–Desprez. Theor Appl Genet 125:109–120PubMedCrossRefGoogle Scholar
  2. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden M, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420PubMedCrossRefGoogle Scholar
  3. Bansal UK, Bariana HS, Gill MB, Hayden MJ (2010) Chromosomal location of an uncharacterized stripe rust resistance gene in wheat. Euphytica 171:121–127CrossRefGoogle Scholar
  4. Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, McIntosh RA (2001) Mapping of durable adult plant and seedling resistance to stripe rust and stem rust diseases in wheat. Aust J Agric Res 52:1247–1255CrossRefGoogle Scholar
  5. Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre CL (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260CrossRefGoogle Scholar
  6. Basnet BR (2012) Molecular characterization of durable yellow and leaf rust resistance in two wheat populations. PhD dissertation, Texas A&M University, College Station, TXGoogle Scholar
  7. Basnet BR, Singh RP, Herrera-Foessel SA, Ibrahim AMH, Huerta-Espino J, Calvo-Salazar V, Rudd JC (2013) Genetic analysis of adult plant resistance to yellow rust and leaf rust in common spring wheat ‘Quaiu 3’. Plant Dis 97:728–736CrossRefGoogle Scholar
  8. Bayles RA, Flath K, Hovmøller MS, de Vallavieille-Pope C (2000) Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe. Agronomie 20:805–811CrossRefGoogle Scholar
  9. Bjarko ME, Line RF (1988) Heritability and number of genes controlling leaf rust resistance in four cultivars of wheat. Phytopathology 78:457–461CrossRefGoogle Scholar
  10. Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9:563–575PubMedCrossRefGoogle Scholar
  11. Boukhatem N, Baret PV, Mingeot D, Jacquemin JM (2002) Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet 104:111–118PubMedCrossRefGoogle Scholar
  12. Cai J, Zhang X, Wang B, Yan M, Qi Y, Kong L (2011) A genetic analysis of segregation distortion revealed by molecular markers in Lophopyrum ponticum chromosome 7E. J Genet 90:373–376PubMedCrossRefGoogle Scholar
  13. Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f sp. tritici] on wheat. Can J Plant Pathol 27:314–337CrossRefGoogle Scholar
  14. Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agric Res 58:648–655CrossRefGoogle Scholar
  15. Cox TS, Raupp WJ, Gill BS (1994) Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343CrossRefGoogle Scholar
  16. Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913PubMedCrossRefGoogle Scholar
  17. Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973PubMedCrossRefGoogle Scholar
  18. Dubin HJ, Brennan JP (2009) Combating stem and leaf rust of wheat: historical perspective, impacts, and lessons learned. International Food Policy Research Institute (IFPRI), Washington, DC.
  19. Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469CrossRefGoogle Scholar
  20. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360PubMedCrossRefGoogle Scholar
  21. Hare RA, McIntosh RA (1979) Genetic and cytogenetic studies of durable adult-plant resistance in ‘Hope’ and related cultivars to wheat rusts. Z Pflanzenzuchtg 83:35–367Google Scholar
  22. Hart GE, Gale MD, McIntosh RA (1993) Linkage map of Triticum aestivum (hexaploid wheat, 2n = 42, genomes A, B and D) and T tauschii (2n = 14, genome D). In: O’Brien SJ (ed) Genetic maps: locus maps of complex genomes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 6204–6219Google Scholar
  23. Hayden MJ, Kuchel H, Chalmers KJ (2004) Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1641–1747PubMedCrossRefGoogle Scholar
  24. Herrera-Foessel S, Lagudah E, Huerta-Espino J, Hayden M, Bariana H, Singh D, Singh R (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249PubMedCrossRefGoogle Scholar
  25. Herrera-Foessel S, Singh R, Huerta-Espino J, Rosewarne G, Periyannan S, Viccars L, Calvo-Salazar V, Lan C, Lagudah E (2012) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1486PubMedCrossRefGoogle Scholar
  26. Hiebert CH, Thomas JB, McCallum BD, Somers DJ (2008) Genetic mapping of the wheat leaf rust resistance gene Lr60 (LrW2). Crop Sci 48:1020–1026Google Scholar
  27. Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, Depauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2011) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091CrossRefGoogle Scholar
  28. Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics 164:655–664PubMedGoogle Scholar
  29. ICARDA (2011) Research to action—strategies to reduce the emerging wheat stripe rust disease. International wheat stripe rust symposium, Aleppo, Syria. ISBN: 92-9127-237-X.
  30. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:E25PubMedCentralPubMedCrossRefGoogle Scholar
  31. Jagger L, Newell C, Berry S, MacCormack R, Boyd L (2011) The genetic characterization of stripe rust resistance in the German wheat cultivar Alcedo. Theor Appl Genet 122:723–733PubMedCrossRefGoogle Scholar
  32. Khlestkina EK, Röder MS, Unger O, Meinel A, Börner A (2007) More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust (Puccinina striiformis) in wheat. Euphytica 153:1–10CrossRefGoogle Scholar
  33. Kolmer JA, Chen X, Jin Y (2009) Diseases which challenge global wheat production—the wheat rusts. In: Carver BF (ed) Wheat science and trade. Wiley, Ames, pp 89–124CrossRefGoogle Scholar
  34. Kong L, Anderson JM, Ohm HW (2009) Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and development of a Bdv3 marker. Plant Breed 128:591–597CrossRefGoogle Scholar
  35. Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  36. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363PubMedCrossRefGoogle Scholar
  37. Li H, Ribaut J-M, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260PubMedCrossRefGoogle Scholar
  38. Lillemo M, Skinnes H, Singh RP, van Ginkel M (2006) Genetic analysis of partial resistance to powdery mildew in bread wheat line Saar. Plant Dis 90:225–228CrossRefGoogle Scholar
  39. Lillemo M, Asalf B, Singh R, Huerta-Espino J, Chen X, He Z, Bjørnstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166PubMedCrossRefGoogle Scholar
  40. Lillemo M, Singh RP, William M, Herrera-Foessel S, Huerta-Espino J, German S, Campos P, Chaves M, Madriaga R, Xia XC, Liang SS, Liu D, Li ZF, Lagudah ES (2011) Multiple rust resistance and gene additivity in wheat: lessons from multi-location case studies in cultivars Parula and Saar. In: McIntosh R (ed) Proc borlaug global rust initiative technical workshop, Saint Paul, Minnesota, USA, pp 111–120. ISBN: 978-0-615-54519-6Google Scholar
  41. Lorieux M, Goffinet B, Perrier X, Gonzalez de Leon D, Lanaud C (1995) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backross populations. Theor Appl Genet 90:70–80Google Scholar
  42. Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157PubMedCrossRefGoogle Scholar
  43. Lu Y, Lan C, Liang S, Zhou X, Liu D, Zhou G, Lu Q, Jing J, Wang M, Xia X, He Z (2009) QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359PubMedCrossRefGoogle Scholar
  44. Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409PubMedCrossRefGoogle Scholar
  45. Mcintosh RA (1992) Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathol 41:523–527CrossRefGoogle Scholar
  46. McIntosh RA, amazaki YY, Dubcovsky J, Rogers WJ, Morris C, Somers DJ, Appels R, Devos KM (2012) MacGene 2012: catalogue of gene symbols for wheat. wheat/komugi/genes/download.jsp. Accessed 4 Aug 2013
  47. Melichar JPE, Berry S, Newell C, MacCormack R, Boyd LA (2008) QTL identification and microphenotype characterisation of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theor Appl Genet 117:391–399PubMedCrossRefGoogle Scholar
  48. Navabi A, Tewari JP, Singh RP, McCallum B, Laroche A, Briggs KG (2005) Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum ‘Cook’. Genome 48:97–107PubMedCrossRefGoogle Scholar
  49. Naz AA, Kunert A, Lind A, Pillen P, Léon J (2008) AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population. Theor Appl Genet 116:1095–1104PubMedCentralPubMedCrossRefGoogle Scholar
  50. Park RF, Bariana HS, Wellings CR, Wallwork H (2002) Detection and occurrence of a new pathotype of Puccinia triticina with virulence for Lr24 in Australia. Aust J Agric Res 53:1069–1076CrossRefGoogle Scholar
  51. Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697PubMedCrossRefGoogle Scholar
  52. Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust severity on leaves and stems of cereals. Can J Res 26:496–500CrossRefGoogle Scholar
  53. Powell NM (2010) Phenotyping and genetic analysis of yellow rust resistance in the UK winter wheat cultivar Claire. PhD dissertation, University of East Anglia, Norwich, UKGoogle Scholar
  54. Prins R, Pretorius Z, Bender C, Lehmensiek A (2011) QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population. Mol Breed 27:259–270CrossRefGoogle Scholar
  55. Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff WH, Prins R (2004) A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor Appl Genet 108:1426–1433PubMedCrossRefGoogle Scholar
  56. Ren Y, He Z, Li J, Lillemo M, Wu L, Bai B, Lu Q, Zhu H, Zhou G, Du J, Lu Q, Xia X (2012a) QTL mapping of adult plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor Appl Genet 125:1211–1221PubMedCrossRefGoogle Scholar
  57. Ren Y, Li Z, He Z, Wu L, Bai B, Lan C, Wang C, Zhou G, Zhu H, Xia X (2012b) QTL mapping of adult-plant resistance to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet 125:1253–1262PubMedCrossRefGoogle Scholar
  58. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  59. Rosewarne GM, Singh RP, Huerta-Espino J, William HM, Bouchet S, Cloutier S, McFadden H, Lagudah ES (2006) Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112:500–508PubMedCrossRefGoogle Scholar
  60. Rosewarne G, Singh RP, Huerta-Espino J, Herrera-Foessel S, Forrest K, Hayden M, Rebetzke G (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294PubMedCrossRefGoogle Scholar
  61. Singh RP (1992) Genetic association of leaf rust resistance gene Lr34 with adult-plant resistance to stripe rust in bread wheat. Phytopathology 82:835–838CrossRefGoogle Scholar
  62. Singh RP (2012) Pros and cons of utilizing major race-specific resistance genes versus partial resistance in breeding rust resistant wheat. In: The BGRI technical workshop, September 1–4, 2012, Beijing, China.
  63. Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88:890–894PubMedCrossRefGoogle Scholar
  64. Singh RP, Sorrells ME, Nelson JC (2000) Mapping of Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155CrossRefGoogle Scholar
  65. Singh RP, Huerta-Espino J, William M (2001) Slow rusting gene based resistance to leaf and yellow rusts in wheat: genetics and breeding at CIMMYT. In: Proceedings of the 10th assembly of the Wheat Breeding Society of Australia Inc., Mildura, Australia, 16–21 September 2001, pp 103–108Google Scholar
  66. Singh RP, Duvillier E, Huerta-Espino J (2004) Virulence to yellow rust resistance gene Yr27: In: A new threat to stable wheat production in Asia (Abs). Second regional yellow rust conference for CWANA, Islamabad, Pakistan 22–26 March, 2004Google Scholar
  67. Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable rust resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127Google Scholar
  68. Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel S, Singh D, Singh P, Velu G, Mason R, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186CrossRefGoogle Scholar
  69. Singh D, Mohler V, Park RF (2013) Discovery, characterisation and mapping of wheat leaf rust resistance gene Lr71. Euphytica 190:131–136CrossRefGoogle Scholar
  70. Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  71. Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293PubMedCrossRefGoogle Scholar
  72. Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellite to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352CrossRefGoogle Scholar
  73. Spielmeyer W, Lagudah ES, Sharp PJ (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L). Crop Sci 43:333–336CrossRefGoogle Scholar
  74. Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735PubMedCrossRefGoogle Scholar
  75. Stubbs RW (1985) Stripe rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol II. Academic Press, OrlandoGoogle Scholar
  76. Suenaga K, William HM, Huerta-Espino J, Singh RP (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890PubMedCrossRefGoogle Scholar
  77. Sun X, Bowden R, Carver BF, Bai G (2010) Molecular mapping of wheat leaf rust resistance gene Lr42. Crop Sci 50:59–66CrossRefGoogle Scholar
  78. Tsilo TJ, Jin Y, Anderson JA (2010) Identification of flanking markers for the stem rust resistance gene Sr6 in wheat. Crop Sci 50:1967–1970CrossRefGoogle Scholar
  79. Vazquez MD, Peterson CJ, Riera-Lizarazu O, Chen X, Heesacker A, Ammar K, Crossa J, Mundt CC (2012) Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor Appl Genet 124:1–11CrossRefGoogle Scholar
  80. Wan A, Zhao Z, Chen X, He Z, Jin S, Jia Q, Yao G, Yang J, Wang B, Li G, Bi Y, Yuan Z (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f sp tritici in China in 2002. Plant Dis 88:896–904CrossRefGoogle Scholar
  81. Wang S, Basten CJ, Zeng Z-B (2011) Windows QTL cartographer v2.5. Department of Statistics, North Carolina State University, Raleigh, NC.
  82. Wellings CR, Singh RP, McIntosh RA, Pretorius ZA (2004) The development and application of near isogenic lines for the wheat stripe (yellow) rust pathosystem. In: Proceedings of the 11th cereal rusts and powdery mildews conference, Norwich, UK, August 2004, p 39Google Scholar
  83. William M, Singh RP, Huerta-Espino J, Islas SO, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159PubMedCrossRefGoogle Scholar
  84. William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf and stripe rust in spring wheat. Genome 49:977–990PubMedCrossRefGoogle Scholar
  85. Worland AJ, Law CN (1986) Genetic analysis of chromosome 2D of wheat I: the location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. Z Pflanzenzuchtg 96:331–345Google Scholar
  86. Worland AJ, Petrovic S, Law CN (1988) Genetic analysis of chromosome 2D of wheat. Plant Breed 100:247–259CrossRefGoogle Scholar
  87. Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208PubMedCrossRefGoogle Scholar
  88. Xu LS, Wang MN, Cheng P, Kang ZS, Hulbert SH, Chen XM (2013) Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet 126:523–533PubMedCrossRefGoogle Scholar
  89. Yu L-X, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Brown-Guidera G, Bhavani S, Morgounov A, He Z, Huerta-Espino J, Sorrells ME (2010) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 26:667–680CrossRefGoogle Scholar
  90. Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071–1082PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. R. Basnet
    • 1
    • 2
    Email author
  • R. P. Singh
    • 1
  • A. M. H. Ibrahim
    • 2
  • S. A. Herrera-Foessel
    • 1
  • J. Huerta-Espino
    • 3
  • C. Lan
    • 1
  • J. C. Rudd
    • 2
  1. 1.International Maize and Wheat Improvement Center (CIMMYT)MexicoMexico
  2. 2.Department of Soil and Crop SciencesTexas A&M UniversityCollege StationUSA
  3. 3.Campo Experimental Valle de Mexico INIFAPChapingo, MexicoMexico

Personalised recommendations