Skip to main content
Log in

Identification of quantitative trait loci involved in the response to cold stress in maize (Zea mays L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The effect of low temperature on the physiology of maize has been well studied, but the genetics behind cold tolerance is poorly understood. To better understand the genetics of cold tolerance we conducted a quantitative trait locus (QTL) analysis on a segregating population from the cross of a cold-tolerant (EP42) and a cold-susceptible (A661) inbred line. The experiments were carried under cold (15 °C) and control (25 °C) conditions in a phytotron. Cold temperature reduced the shoot dry weight, number of survival plants and quantum yield of electron transport at photosystem II (ΦPSII) and increased the anthocyanin content in maize seedlings. Low correlations were found between characteristics under low and optimum temperature. Ten QTLs were identified, six of them at control temperatures and four under cold temperatures. Through a meta-QTL analysis we identified three genomic regions in chromosomes 2, 4 and 8 that regulate the development of maize seedlings under cold conditions and are the most promising regions to be the target of future marker-assisted selection breeding programs or to perform fine mapping to identify genes involved in cold tolerance in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bochicchio A (1985) Zea mays L. and chilling conditions at sowing time: a review. Maydica 30:241–256

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971

    CAS  PubMed  Google Scholar 

  • Cooper C, MacDonald P (1970) Energetics of early seedling growth in corn (Zea mays L.). Crop Sci 10:136–138

    Article  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Ribaut J-M, Messmer R, Stamp P (2002) Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 53:1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut J-M, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56:241–253

    Article  CAS  PubMed  Google Scholar 

  • Geadelmann JL, Peterson RH (1976) Registration of five maize parental lines (Reg. No. PL 43 to 47). Crop Sci 16:747

    Article  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155(1):463–473

    CAS  PubMed  Google Scholar 

  • Greaves JA (1996) Improving suboptimal temperature tolerance in maize—the search for variation. J Exp Bot 47(3):307–323

    Article  CAS  Google Scholar 

  • Guerra-Peraza O, Leipner J, Reimer R, Thuy Nguyen H, Stamp P, Fracheboud Y (2011) Temperature at night affects the genetic control of acclimation to cold in maize seedlings. Maydica 56:366–377

    Google Scholar 

  • Haldimann P (1999) How do changes in temperature during growth affect leaf pigment composition and photosynthesis in Zea mays genotypes differing in sensitivity to low temperature? J Exp Bot 50(333):543–550

    CAS  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2010) Estimating and interpreting heritability for plant breeding: an update. In: Plant breeding reviews. Wiley, London, pp 9–112. doi:10.1002/9780470650202.ch2

  • Hughes NM, Neufeld HS, Burkey KO (2005) Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytol 168(3):575–587

    Article  CAS  PubMed  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109(3):618–629

    Article  CAS  PubMed  Google Scholar 

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Exp Bot 56(414):1153–1163

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181

    Article  CAS  PubMed  Google Scholar 

  • Leipner J, Mayer E (2008) QTL mapping in maize seedlings reveals little relevance of C4 cycle enzymes and antioxidants for genotypic differences in chilling tolerance of photosynthesis. Maydica 53:269–277

    Google Scholar 

  • Leipner J, Fracheboud Y, Stamp P (1999) Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environ Exp Bot 42(2):129–139

    Article  CAS  Google Scholar 

  • Leipner J, Jompuk C, Camp K-H, Stamp P, Fracheboud Y (2008) QTL studies reveal little relevance of chilling-related seedling traits for yield in maize. Theor Appl Genet 116(4):555–562

    Article  PubMed  Google Scholar 

  • Orr W, Roche AIDL, Singh J, Voldeng H (1983) Imbibitional chilling injury in cultivars of soybeans differing in temperature sensitivity to pod formation and maturation periods. Can J Bot 61(12):2996–2998

    Article  Google Scholar 

  • Pietrini F, Iannlli MA, Massacci A (2002) Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant, Cell Environ 25:1251–1259

    Article  CAS  Google Scholar 

  • Presterl T, Ouzunova M, Schmidt W, Möller E, Röber F, Knaak C, Ernst K, Westhoff P, Geiger H (2007) Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114(6):1059–1070

    Article  PubMed  Google Scholar 

  • Revilla P, Malvar RA, Butron A, Ordas A (2000) Inheritance of cold tolerance at emergence and during early season growth in maize. Crop Sci 40:1579–1585

    Article  Google Scholar 

  • Revilla P, Butron A, Cartea ME, Malvar RA, Ordas A (2005) Breeding for cold tolerance. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance trough breeding and molecular approaches. Haworth, New York, pp 301–398

    Google Scholar 

  • Rodriguez VM, Butron A, Malvar RA, Ordas A, Revilla P (2008) Quantitative trait loci for cold tolerance in the maize IBM population. Int J Plant Sci 169(4):551–556

    Article  Google Scholar 

  • Rodríguez V, Velasco P, Garrido J, Revilla P, Ordás A, Butrón A (2013) Genetic regulation of cold-induced albinism in the maize inbred line A661. J Exp Bot 64(12):3657–3667

    Google Scholar 

  • Roitsch T, González M-C (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9(12):606–613

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc. (2008) SAS® 9.2 enhanced logging facilities. SAS Inst., Cary, NC

    Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2–3):337–354

    Article  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and QTL meta-analysis algorithms. Bioinformatics 28(15):2082–2083

    Article  CAS  PubMed  Google Scholar 

  • Steyn WJ, Wand SJE, Jacobs G, Rosecrance RC, Roberts SC (2009) Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel. Physiol Plant 136(4):461–472

    Article  CAS  PubMed  Google Scholar 

  • Truntzler M, Barriere Y, Sawkins MC, Lespinasse D, Betran J, Charcosset A, Moreau L (2010) Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet 121(8):1465–1482

    Article  CAS  PubMed  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Agric Genomics 2:1–5

    Google Scholar 

  • Utz HF, Melchinger AE, Schon CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154(3):1839–1849

    PubMed  Google Scholar 

  • Veyrieras J-B, Goffinet B, Charcosset A (2005) MetaQTL, version 1.0. INRA, France

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Plan for Research and Development (project code AGL2010-22254). M. O. A. Rady acknowledges his fellowship from the International Centre for High Agronomic Mediterranean Studies (CIHEAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, V.M., Butrón, A., Rady, M.O.A. et al. Identification of quantitative trait loci involved in the response to cold stress in maize (Zea mays L.). Mol Breeding 33, 363–371 (2014). https://doi.org/10.1007/s11032-013-9955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9955-4

Keywords

Navigation