Advertisement

Molecular Breeding

, Volume 32, Issue 1, pp 27–37 | Cite as

Gene-based high-density mapping of the gene rym7 conferring resistance to Barley mild mosaic virus (BaMMV)

  • Ping Yang
  • Dragan Perovic
  • Antje Habekuß
  • Ruonan Zhou
  • Andreas Graner
  • Frank Ordon
  • Nils SteinEmail author
Article

Abstract

Barley yellow mosaic virus (BaYMV) disease seriously affects winter barley (Hordeum vulgare L.) production. Improvement of resistance to this disease can prevent yield losses. Based on previous reports, the gene rym7 (rmm7), conferring partial resistance to BaMMV, was assigned to chromosome 1H, closely linked to the centromere. In this study, newly developed barley genomic resources were applied to saturate the genetic map at the rym7 locus. Out of a set of 350 gene-based markers of chromosome 1H, we genetically assigned 23 to the rym7 region, delimiting the resistance locus to a 9.9-cM interval close to the centromere by genetic mapping in 53 doubled haploid progeny of a bi-parental mapping population. Nine gene-derived co-dominant markers co-segregated with the resistance locus. Among these, we identified the eukaryotic translation initiation factor Hv-eIF(iso)4E. Its homolog in Arabidopsis thaliana confers resistance to potyviruses. However, sequencing the entire open reading frame of resistant and susceptible genotypes could not reveal any sequence variation in exons of the gene. These results demonstrate how to combine newly developed barley genomic resources for rapid gene-based marker saturation. As a result, several easy-to-handle co-dominant markers have been identified for marker-assisted selection of rym7 in barley breeding.

Keywords

BaMMV/BaYMV rym7 (rmm7Barley eIF(iso)4E Virus resistance 

Notes

Acknowledgments

We gratefully acknowledge Jelena Perovic (IPK) and Dörte Grau (JKI) for excellent technical assistance. The work was financed as part of the collaborative project “Plant KBBE II-ViReCrop” and was supported by a grant (FKZ.: 0315708) from the German Ministry of Education and Research (BMBF) to NS and FO.

References

  1. Adams MJ, Swaby AG, Jones P (1988) Confirmation of the transmission of Barley yellow mosaic-virus (BaYMV) by the fungus Polymyxa graminis. Ann Appl Biol 112(1):133–141CrossRefGoogle Scholar
  2. Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF (2001) M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31(1):24–26PubMedGoogle Scholar
  3. Chen JP, Adams MJ, Zhu FT, Wang ZQ, Chen J, Huang SZ, Zhang ZC (1996) Response of foreign barley cultivars to barley yellow mosaic virus at different sites in China. Plant Pathol 45(6):1117–1125CrossRefGoogle Scholar
  4. Chen J, Shi NN, Cheng Y, Diao A, Chen JP, Wilson TMA, Antoniw JF, Adams MJJ (1999) Molecular analysis of barley yellow mosaic virus isolates from China. Virus Res 64(1):13–21PubMedCrossRefGoogle Scholar
  5. Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34(3):475–483PubMedCrossRefGoogle Scholar
  6. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44(12):1388–1392PubMedCrossRefGoogle Scholar
  7. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  8. Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32(6):927–934PubMedCrossRefGoogle Scholar
  9. Graner A, Streng S, Kellermann A, Proeseler G, Schiemann A, Peterka H, Ordon F (1999a) Molecular mapping of genes conferring resistance to soil-borne viruses in barley—an approach to promote understanding of host-pathogen interactions. Z Pflanzenk Pflanzen 106(4):405–410Google Scholar
  10. Graner A, Streng S, Kellermann A, Schiemann A, Bauer E, Waugh R, Pellio B, Ordon F (1999b) Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the Barley Yellow Mosaic Virus Complex. Theor Appl Genet 98(2):285–290CrossRefGoogle Scholar
  11. Habekuß A, Kuhne T, Kramer I, Rabenstein F, Ehrig F, Ruge-Wehling B, Huth W, Ordon F (2008) Identification of Barley mild mosaic virus isolates in Germany breaking rym5 resistance. J Phytopathol 156(1):36–41Google Scholar
  12. Hariri D, Meyer M, Prud’homme H (2003) Characterization of a new barley mild mosaic virus pathotype in France. Eur J Plant Pathol 109(9):921–928CrossRefGoogle Scholar
  13. Huth W (1989) Ein Jahrzehnt Barley yellow mosaic virus in der Bundesrepublik Deutschland. Nachrichtenbl Dtsch Pflanzenschutzdienst 40:49–55Google Scholar
  14. Huth W (1991) Verbreitung der Gelbmosaikviren BaYMV, BaMMV und BaYMV-2 und Screening von Gerstensorten auf Resistenz gegenüber BaYMV-2. Nachrichtenbl Dtsch Pflanzenschutzdienst 43:233–237Google Scholar
  15. IBSC (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716Google Scholar
  16. International Brachypodium I (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768CrossRefGoogle Scholar
  17. Jenner CE, Nellist CF, Barker GC, Walsh JA (2010) Turnip mosaic virus (TuMV) is able to use alleles of both eIF4E and eIF(iso)4E from multiple loci of the diploid Brassica rapa. Mol Plant Microbe Interact 23(11):1498–1505PubMedCrossRefGoogle Scholar
  18. Kai H, Takata K, Tsukazaki M, Furusho M, Baba T (2012) Molecular mapping of Rym17, a dominant and rym18 a recessive barley yellow mosaic virus (BaYMV) resistance genes derived from Hordeum vulgare L. Theor Appl Genet 124(3):577–583Google Scholar
  19. Kang BC, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621PubMedCrossRefGoogle Scholar
  20. Kanyuka K, Ward E, Adams MJ (2003) Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol Plant Pathol 4(5):393–406PubMedCrossRefGoogle Scholar
  21. Kanyuka K, McGrann G, Alhudaib K, Hariri D, Adams MJ (2004) Biological and sequence analysis of a novel European isolate of Barley mild mosaic virus that overcomes the barley rym5 resistance gene. Arch Virol 149(8):1469–1480PubMedCrossRefGoogle Scholar
  22. Kanyuka K, Druka A, Caldwell DG, Tymon A, McCallum N, Waugh R, Adams MJ (2005) Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol Plant Pathol 6(4):449–458PubMedCrossRefGoogle Scholar
  23. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  24. Kühne T (2009) Soil-borne viruses affecting cereals—known for long but still a threat. Virus Res 141(2):174–183PubMedCrossRefGoogle Scholar
  25. Kühne T, Shi N, Proeseler G, Adams MJ, Kanyuka K (2003) The ability of a bymovirus to overcome the rym4-mediated resistance in barley correlates with a codon change in the VPg coding region on RNA1. J Gen Virol 84(Pt 10):2853–2859PubMedCrossRefGoogle Scholar
  26. Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during Potyvirus infection. Curr Biol 12(12):1046–1051PubMedCrossRefGoogle Scholar
  27. Matsumoto T, Tanaka T, Sakai H, Amano N, Kanamori H, Kurita K, Kikuta A, Kamiya K, Yamamoto M, Ikawa H, Fujii N, Hori K, Itoh T, Sato K (2011) Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol 156(1):20–28PubMedCrossRefGoogle Scholar
  28. Mayer KF, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23(4):1249–1263PubMedCrossRefGoogle Scholar
  29. Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18(12):613–615PubMedCrossRefGoogle Scholar
  30. Nishigawa H, Hagiwara T, Yumoto M, Sotome T, Kato T, Natsuaki T (2008) Molecular phylogenetic analysis of Barley yellow mosaic virus. Arch Virol 153(9):1783–1786PubMedCrossRefGoogle Scholar
  31. Nomura K, Kashiwazaki S, Hibino H, Inoue T, Nakata E, Tsuzaki Y, Okuyama S (1996) Biological and serological properties of strains of Barley mild mosaic virus. J Phytopathol 144(2):103–107CrossRefGoogle Scholar
  32. Ordon F, Ahlemeyer J, Werner K, Kohler W, Friedt W (2005) Molecular assessment of genetic diversity in winter barley and its use in breeding. Euphytica 146(1–2):21–28CrossRefGoogle Scholar
  33. Pellio B, Streng S, Bauer E, Stein N, Perovic D, Schiemann A, Friedt W, Ordon F, Graner A (2005) High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp vulgare L.). Theor Appl Genet 110(2):283–293PubMedCrossRefGoogle Scholar
  34. Plumb RT, Lennon EA, Gutteridge RA (1986) The effects of infection by Barley yellow mosaic-virus on the yield and components of yield of barley. Plant Pathol 35(3):314–318CrossRefGoogle Scholar
  35. Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11(1):40–45PubMedCrossRefGoogle Scholar
  36. Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 87(Pt 7):2089–2098PubMedCrossRefGoogle Scholar
  37. Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103(2):110–117PubMedCrossRefGoogle Scholar
  38. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen J-E, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Meth 6:550–551CrossRefGoogle Scholar
  39. Shahinnia F, Druka A, Frankowiak J, Morgante M, Waugh R, Stein N (2012) High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H. Theor Appl Genet 124(2):373–384PubMedCrossRefGoogle Scholar
  40. Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42(6):912–922PubMedCrossRefGoogle Scholar
  41. Stein N, Prasad M, Scholz U, Thiel T, Zhang HN, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114(5):823–839PubMedCrossRefGoogle Scholar
  42. Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32(1):e5PubMedCrossRefGoogle Scholar
  43. Van Ooijen TW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, NetherlandsGoogle Scholar
  44. Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114(6):1091–1103PubMedCrossRefGoogle Scholar
  45. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78PubMedCrossRefGoogle Scholar
  46. Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16(1):45–55CrossRefGoogle Scholar
  47. Zheng T, Cheng Y, Chen JP, Antoniw JF, Adams MJ (1999) The occurrence of Barley mild mosaic virus (BaMMV) in China and the nucleotide sequence of its coat protein gene. J Phytopathol 147(4):229–234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ping Yang
    • 1
  • Dragan Perovic
    • 2
  • Antje Habekuß
    • 2
  • Ruonan Zhou
    • 1
  • Andreas Graner
    • 1
  • Frank Ordon
    • 2
  • Nils Stein
    • 1
    Email author
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland (OT) GaterslebenGermany
  2. 2.Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated PlantsInstitute for Resistance Research and Stress ToleranceQuedlinburgGermany

Personalised recommendations