Baik BK, Ullrich SE (2008) Barley for food: characteristics, improvement, and renewed interest. J Cereal Sci 48:233–242
Article
CAS
Google Scholar
Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090
Article
Google Scholar
Bertrand C, Collar Y, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572
Article
Google Scholar
Blamey FPC, Robinson NJ, Asher CJ (1992) Interspecific differences in aluminium tolerance in relation to root cation-exchange capacity. Plant Soil 146:77–82
Article
CAS
Google Scholar
Ceretta CA (1988) Aluminium tolerance in maize cultivars. Documentos Centro Nacional de Pesquisa de Milho e Sorgo 6:492–498
Google Scholar
Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117
Article
CAS
Google Scholar
Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582
Article
Google Scholar
Delhaize E, Ryan P, Randall P (1993) Aluminum tolerance in wheat (Triticum
aestivum L.).II aluminium-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702
PubMed
CAS
Google Scholar
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
Google Scholar
FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)—managing systems at risk. Food and Agriculture Organization of the United Nations, Rome
Google Scholar
FAOSTAT (2009) Production of crops. Available at http://faostat.fao.org/site/567/default.aspx (verified 20 Dic 2011). FAO, Rome
Ferreira JJ, Campa A, Perez-Vega E, Rodriguez-Suarez C, Giraldez R (2012) Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus. Theor Appl Genet 124:777–788
PubMed
Article
Google Scholar
Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernandez-Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114:249–260
PubMed
Article
CAS
Google Scholar
Frisch M (2005) Optimum design of marker-assisted backcross programs. In: Loerz H, Wenzel G (eds) Biotechnology in agriculture and forestry, vol 55. Springer, Berlin, pp 319–334
Google Scholar
Frisch M, Bohn M, Melchinger A (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301
Article
Google Scholar
Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H, Sato K, Nakazono M, Ma JF (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun 3:713. doi:10.1038/ncomms1726
PubMed
Article
Google Scholar
Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091
PubMed
Article
CAS
Google Scholar
Gallardo F, Borie F, Alvear M, von Baer E (1999) Evaluation of aluminum tolerance of three barley cultivars by two short-term screening methods and field experiments. Soil Sci Plant Nutr 3:713–719
Article
Google Scholar
Gallego FJ, Benito C (1997) Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor Appl Genet 95:393–399
Article
CAS
Google Scholar
Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161
Article
Google Scholar
Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12
Article
CAS
Google Scholar
Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Yuriko K, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Hiroyuki K, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743
PubMed
Article
CAS
Google Scholar
Horsley RD, Schwarz PB, Hammond JJ (1995) Genetic diversity in malt quality of North American six-rowed spring barley germplasm. Crop Sci 35:113–118
Article
Google Scholar
Jefferies SP, King BJ, Barr R, Warner P, Logue SJ, Langridge P (2003) Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breed 122:52–56
Article
CAS
Google Scholar
Kosambi DD (1944) The estimation of the map distance from recombination values. Ann Eugen 12:172–175
Google Scholar
Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theor Appl Genet 107:1021–1027
PubMed
Article
CAS
Google Scholar
Ligaba A, Shen H, Shibata K, Yamamoto Y, Tanakamaru S, Matsumoto H (2004) The role of phosphorus in aluminum-induced citrate and malate exudation in rape (Brassica napus L.). Physiol Plant 120:575–584
PubMed
Article
CAS
Google Scholar
Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol 142:1294–1303
PubMed
Article
CAS
Google Scholar
Liu Z, Biyashev R, Saghai Marrof M (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876
Article
CAS
Google Scholar
Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399
PubMed
Article
CAS
Google Scholar
Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278
PubMed
Article
CAS
Google Scholar
Ma JF, Nagao S, Sato K, Ito H, Furukawa J, Takeda K (2004) Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J Exp Bot 55:1335–1341
PubMed
Article
CAS
Google Scholar
Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161
PubMed
Article
CAS
Google Scholar
Michelmore R, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832
PubMed
Article
CAS
Google Scholar
Minella E, Sorrells ME (1992) Aluminum tolerance in barley: genetic relationships among genotypes of diverse origin. Crop Sci 32:593–598
Article
CAS
Google Scholar
Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977
PubMed
Article
CAS
Google Scholar
Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, Revoredo-Giha C, Russell J, Steffenson BJ, Swanston JS, Thomas WTB, Waugh R, White PJ, Bingham IJ (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Sec 3:141–178
Article
Google Scholar
Nguyen VT, Burrow MD, Nguyen HT, Le BT, Le TD, Paterson AH (2001) Molecular mapping of genes conferring aluminium tolerance in rice (Oryza sativa L.). Theor Appl Genet 102:1002–1010
Article
CAS
Google Scholar
Pandey S, Ceballos H, Magnavaca R, Bahia Filho AFC, Duque-Vargas J, Vinasco LE (1994) Genetics of tolerance to soil acidity in tropical maize. Crop Sci 34:1511–1514
Article
Google Scholar
Peñaloza E, Martinez J, Montenegro A, Corcuera L (2004) Response of two lupin species to phytotoxic aluminum. Chil J Agric Res 64:127–138
Google Scholar
Pereira JF, Zhou G, Delhaize E, Richardson T, Zhou M, Ryan PR (2010) Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann Bot 106:205–214
PubMed
Article
CAS
Google Scholar
Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827
Article
CAS
Google Scholar
Prigge V, Melchinger AE, Dhillon BS, Frisch M (2009) Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations. Theor Appl Genet 119:23–32
PubMed
Article
CAS
Google Scholar
Raman H, Gustafson P (2011) Molecular breeding of cereals for aluminum resistance. In: Costa de Oliveira A, Varshney RK (eds) Roots genomics. Springer, Berlin, pp 251–287
Chapter
Google Scholar
Raman H, Moroni S, Sato K, Read J, Scott J (2002) Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458–464
PubMed
Article
CAS
Google Scholar
Raman H, Karakousis A, Moroni JS, Raman R, Read BJ, Garvin DF, Kochian LV, Sorrells ME (2003) Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. Aust J Agric Res 54:1315–1321
Article
CAS
Google Scholar
Raman H, Zhang K, Cakir M, Appels R, Garvin D, Maron L, Kochian L, Moroni J, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb D, Delhaize E, Ryan P (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791
PubMed
Article
CAS
Google Scholar
Raman H, Stodart B, Ryan P, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A (2010) Genome-wide association analysis of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53:957–966
PubMed
Article
CAS
Google Scholar
Ramsay L, Macaulay M, Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards K, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005
PubMed
CAS
Google Scholar
Reid DA, Jones GD, Armiger WH, Foy CD, Koch EJ, Starling TM (1969) Differential aluminum tolerance of winter barley varieties and selections in associated greenhouse and field experiments. Agron J 61:218–222
Article
Google Scholar
Salgotra RK, Gupta BB, Millwood RJ, Balasubramaniam M, Stewart CN Jr (2012) Introgression of bacterial leaf blight resistance and aroma genes using functional marker-assisted selection in rice (Oryza sativa L.). Euphytica 187:313–323
Article
CAS
Google Scholar
SAS Institute (2001) SAS/STAT users guide, ver. 8.02. SAS Institute, Cary
Google Scholar
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653
PubMed
Article
CAS
Google Scholar
Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate assay. G3 (Bethesda) 1:187–196
Schmierer DA, Kandemir N, Kudrna DA, Jones BL, Ullrich SE, Kleinhofs A (2004) Molecular marker-assisted selection for enhanced yield in malting barley. Mol Breed 14:463–473
Article
CAS
Google Scholar
Servin B, Hospital F (2002) Optimal positioning of markers to control genetic background in marker assisted backcrossing. J Hered 93:214–217
PubMed
Article
CAS
Google Scholar
Silva JA, Carvalho FI, Coimbra JL, Benin G, Oliveira AC, Vieira EA, Finatto T, Bertan I, Silva GO, Garcia SM (2006) Tolerance to aluminium toxicity in oat (Avena sativa L.) in hydroponic cultivation, Revista Brasileira de Agrociencia. Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil 2:265–271
Silva-Navas J, Benito C, Téllez-Robledo B, Abd El-Moneim D, Gallego FJ (2012) The ScAACT1 gene at the Q
alt5
locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). Mol Breed 30:845–856
Article
CAS
Google Scholar
Stam P (2003) Marker-assisted introgression: speed at any cost? Eucarpia leafy vegetables. (http://www.leafyvegetables.nl)
Tang Y, Sorrells M, Kochian L, Garvin D (2000) Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci 40:778–782
Article
CAS
Google Scholar
Tanksley S (1998) Marker-assisted selection: new tools and strategies. Trend Plant Sci 3:236–239
Article
Google Scholar
Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822
PubMed
Article
CAS
Google Scholar
van Berloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236
PubMed
Article
Google Scholar
van Berloo R, Stam P (1999) Comparison between marker-assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor Appl Genet 98:113–118
Article
Google Scholar
Van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen
Google Scholar
Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103
PubMed
Article
CAS
Google Scholar
Wang H, Qi M, Cutler AJ (1993) A simple method of preparing plant samples for PCR. Nucleic Acids Res 21:4153–4154
PubMed
Article
CAS
Google Scholar
Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276
PubMed
Article
CAS
Google Scholar
Wood S, Sebastian K, Scherr SJ (2000) Pilot analysis of global ecosystems: agroecosystems. Rosen, Washington
Google Scholar
Zhao X, Tan G, Xing Y, Wie L, Chao Q, Zuo W, Lübberstedt T, Xu M (2012) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breed. doi:10.1007/s11032-011-9694-3
Google Scholar
Zheng SJ (2010) Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot 106:183–184
PubMed
Article
Google Scholar