Skip to main content
Log in

Efficient and fine mapping of RMES1 conferring resistance to sorghum aphid Melanaphis sacchari

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Melanaphis sacchari causes serious damage to sorghum (Sorghum bicolor (L.) Moench) growth, development and productivity in many countries. A dominant gene (RMES1) conferring resistance to M. sacchari has been found in the grain sorghum variety Henong 16 (HN16), but fine mapping of the RMES1 locus remains to be reported. In this study, genetic populations segregating for RMES1 were prepared with HN16 and BTx623 as parental lines. The latter had been used for sorghum genome sequencing but was found to be susceptible to M. sacchari in this work. A total of 11 molecular markers were mapped to the short arm of chromosome 6 harboring RMES1. The closest markers flanking the RMES1 locus were Sb6m2650 and Sb6rj2776, which delimited a chromosomal region of about 126 kb containing five predicted genes. The utility of the newly identified DNA markers for tagging RMES1 in molecular breeding of M. sacchari resistance, and further efforts in cloning RMES1, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apotikar DB, Venkateswarlu D, Ghorade RB, Wadaskar RM, Patil JV, Kulwal PL (2011) Mapping of shoot fly tolerance loci in sorghum using SSR markers. J Genet 90:59–66

    Article  PubMed  CAS  Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world crop pests: an identification and information guide. Wiley, London, pp 1–8

    Google Scholar 

  • Bouchet S, Pot D, Deu M, Rami JF, Billot C, Perrier X, Rivallan R, Gardes L, Xia L, Wenzl P, Kilian A, Glaszmann JC (2012) Genetic structure, linkage disequilibrium and signature of selection in sorghum: lessons from physically anchored DArT markers. PLoS ONE 3:1–15

    Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–520

    Article  PubMed  CAS  Google Scholar 

  • Chang JH, Xia XY, Zhang L, Li RG, Liu GQ, Luo YW (2006) Analysis of the resistance gene to the sorghum aphid, Melanaphis sacchari, with SSR marker in Sorghum bicolor. Acta Pratacult Sin 115:113–118 (in Chinese)

    Google Scholar 

  • Chang JH, Cui JH, Xue W, Zhang QW (2012) Identification of molecular markers for an aphid resistance gene in sorghum and selective efficiency using these markers. J Integr Agric 11:1086–1092

    CAS  Google Scholar 

  • Chernoff H, Lehmann EL (1954) The use of maximum likelihood estimates in χ2 tests for goodness-of-fit. Ann Math Stat 25:579–586

    Article  Google Scholar 

  • Dugas DV, Monaco MK, Olsen A, Klein RR, Kumari S, Ware D, Klein PE (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics 12:514

    Article  PubMed  CAS  Google Scholar 

  • Eddleman BR, Chang CC, McCarl BA (1999) Economic benefits from grain sorghum variety improvement in the United States. In: Wiseman BR, Webster JA (eds) Economic, environmental, and social benefits of resistance in field crops. Thomas Say Publications, Maryland, pp 35–37

    Google Scholar 

  • Jackson DR, Arthur MF, Davis M, Kresovich S, Lawhon WT, Lipinsky ES, Price M, Rudolph A (2008) Research report on development of sweet sorghum as an energy crop. Battelle Press, Columbus, pp 277–290

    Google Scholar 

  • Kawahigashi H, Kasuga S, Ando T, Kanamori H, Wu J, Yonemaru J, Sazuka T, Matsumoto T (2011) Positional cloning of ds1, the target leaf spot resistance gene against Bipolaris sorghicola in sorghum. Theor Appl Genet 123:131–142

    Article  PubMed  Google Scholar 

  • Kindler SD, Elliott NC, Royer TA, Giles KL, Tao F, Fuentes R (2002) Effect of greenbugs on winter wheat yield. J Econ Entomol 95:89–95

    Article  PubMed  CAS  Google Scholar 

  • Li ML, Yuyama N, Luo L, Hirata M, Cai HW (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24:41–47

    Article  Google Scholar 

  • Lin ZW, Li XR, Shannon LM, Yeh CT, Wang ML, Bai GH, Peng Z, Li JR, Tric HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu JM (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44:720–724

    Article  PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing linkage maps with MapMaker/Exp version 3.0. A tutorial reference manual, 3rd edn. Whitehead Institute for Medical Research, Cambridge

    Google Scholar 

  • Lu QS, Dahlberg JA (2001) Chinese sorghum genetic resources. Econ Bot 55:401–425

    Article  Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Palmer GH (1992) Sorghum-food, beverage and brewing potentials. Process Biochem 27:145–153

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman WD, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant JP, Sourdille P, Balfourier F, Le Paslier MC, Chauveau A, Cakir M, Gandon B, Feuillet C (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210

    Article  PubMed  CAS  Google Scholar 

  • Punnuri S, Huang Y, Steets J, Wu Y (2012) Developing new markers and QTL mapping for greenbug resistance in sorghum [Sorghum bicolor (L.) Moench]. Euphytica. doi:10.1007/s10681-012-0755-4

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgesen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC (1993) Host-plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot 12:11–34

    Article  Google Scholar 

  • Singh BU, Padmaja PG, Seetharama N (2004) Biology and management of the sugarcane aphid, Melanaphis sacchari (Zehntner) (Homoptera: Aphididae), in sorghum: a review. Crop Prot 23:739–755

    Article  Google Scholar 

  • Teetes GL (1980) Breeding sorghums resistant to insects. In: Maxwell FG, Jennings PR (eds) Breeding plants resistant to insects. Wiley, New York, pp 457–485

    Google Scholar 

  • van den Berg J (2002) Status of resistance of sorghum hybrids to the aphid, Melanaphis sacchari (Zehntner) (Homoptera: Aphididae). J Plant Soil (South Africa) 19:151–155

    Google Scholar 

  • Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53:105–119

    Article  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart, software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • You FM, Wanjugi H, Huo NX, Lazo GR, Luo MC, Anderson OD, Dvorak J, Gu YQ (2010) RJPrimers: unique transposable element insertion junction discovery and PCR primer design for marker development. Nucleic Acids Res 38:313–320

    Article  Google Scholar 

  • Young WR, Teetes GL (1977) Sorghum entomology. Annu Rev Entomol 22:193–218

    Article  Google Scholar 

  • Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang S, Ramachandran S, Liu CM, Jing HC (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Article  PubMed  CAS  Google Scholar 

  • Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, Tao YZ (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot. doi:10.1093/jxb/ers205

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Hebei Province Natural Science Foundation (C2010000758) and the State Key Laboratory of Plant Cell and Chromosome Engineering (PCCE-2008-KF-02). We thank Professor Yinghua Huang (USDA-ARS Plant Science Research Laboratory, USA), Drs Ruiheng Du and Guoqing Liu (Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, China), Jianghui Cui (Agricultural University of Hebei, China), and Wei Xue (Baoding Vocational and Technical College, China) for constructive suggestions on our work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhua Chang or Daowen Wang.

Additional information

Faming Wang and Songmin Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Zhao, S., Han, Y. et al. Efficient and fine mapping of RMES1 conferring resistance to sorghum aphid Melanaphis sacchari . Mol Breeding 31, 777–784 (2013). https://doi.org/10.1007/s11032-012-9832-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9832-6

Keywords

Navigation