Skip to main content
Log in

Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A better understanding of the genetic control of tree architecture would potentially allow improved tailoring of newly bred apple cultivars in terms of field management aspects, such as planting density, pruning, pest control and disease protection. It would also have an indirect impact on yield and fruit quality. The Columnar (Co) locus strongly suppresses lateral branch elongation and is the most important genetic locus influencing tree architecture in apple. Co has previously been mapped on apple linkage group (LG) 10. In order to obtain fine mapping of Co, both genetically and physically, we have phenotypically analysed and screened three adult segregating experimental populations, with a total of 301 F1 plants, and one substantial 3-year old population of 1,250 F1 plants with newly developed simple sequence repeat (SSR) markers, based on the ‘Golden delicious’ apple genome sequence now available. Co was found to co-segregate with SSR marker Co04R12 and was confined in a region of 0.56 cM between SSR markers Co04R11 and Co04R13, corresponding to 393 kb on the ‘Golden delicious’ genome sequence. In this region, 36 genes were predicted, including at least seven sequences potentially belonging to genes that could be considered candidates for involvement in control of shoot development. Our results provide highly reliable, virtually co-segregating markers that will facilitate apple breeding aimed at modifications of the tree habit and lay the foundations for the cloning of Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon Mutant. Plant Cell 9:841–857

    Article  PubMed  CAS  Google Scholar 

  • Bai T, Zhu Y, Fernández-Fernández F, Keulemans J, Brown S, Xu K (2012) Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Mol Genet Genomics 287:437–450

    Article  PubMed  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  • Busov VB, Johannes E, Whetten RW, Sederoff RR, Spiker SL, Lanz-Garcia C, Goldfarb B (2004) An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein. Planta 218:916–927

    Article  PubMed  CAS  Google Scholar 

  • Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212

    Article  PubMed  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hortic Sci 122:350–359

    CAS  Google Scholar 

  • Cook DR, Varshney RK (2010) From genome studies to agricultural biotechnology: closing the gap between basic plant science and applied agriculture. Curr Opin Plant Biol 13:115–118

    Article  PubMed  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151:1513–1530

    Article  PubMed  CAS  Google Scholar 

  • De Wit I, Cook NC, Keulemans J (2004) Characterization of tree architecture in two-year-old apple seedling populations of different rogenies with a common columnar gene parent. Acta Hortic 663:363–368

    Google Scholar 

  • Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382

    Article  PubMed  CAS  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  PubMed  CAS  Google Scholar 

  • Fisher DV (1970) Spur strains of McIntosh discovered in British Columbia. Can Fruit Var Hortic Digest 24:27–32

    Google Scholar 

  • Flachowsky H, Hättasch C, Höfer M, Peil A, Hanke MV (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    Article  PubMed  CAS  Google Scholar 

  • Galli P, Broggini GAL, Gessler C, Patocchi A (2010) High-resolution genetic map of the Rvi15 (Vr2) apple scab resistance locus. Mol Breed 26:561–572

    Article  Google Scholar 

  • Guo M, Thomas J, Collins G, Timmermans MCP (2008) Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell 20:48–58

    Article  PubMed  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Conner PJ, Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J Am Soc Hortic Sci 122:347–349

    CAS  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding: tree and tropical fruits. Wiley, London, pp 1–77

    Google Scholar 

  • Kelsey DF, Brown SK (1992) ‘McIntosh Wijick’: a columnar mutation of ‘McIntosh’ apple proving useful in physiology and breeding research. Fruit Var 46:83–87

    Google Scholar 

  • Kenis K, Keulemans J (2004) QTL analysis of growth characteristics in apple. Acta Hortic 663:369–374

    CAS  Google Scholar 

  • Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208

    Article  CAS  Google Scholar 

  • Khan MA, Durel CE, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Song KJ, Hwang J-H, Shin YU, Lee HJ (2003) Development of RAPD and SCAR markers linked to the Co gene conferring columnar growth habit in apple (Malus pumila Mill.). J Hortic Sci Biotechnol 78:512–517

    CAS  Google Scholar 

  • Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67:472–484

    Article  PubMed  CAS  Google Scholar 

  • Lapins KO (1974) Spur type growth habit in 60 apple progenies. J Am Soc Hortic Sci 99:568–572

    Google Scholar 

  • Lapins KO (1976) Inheritance of compact growth type in apple. J Am Soc Hortic Sci 101:33–135

    Google Scholar 

  • Lauri PE, Lespinasse JM (1993) The relationship between cultivar fruiting type and fruiting branch characteristics in apple trees. Acta Hortic 349:259–263

    Google Scholar 

  • Lee S, Lee S, Yang KY, Kim YM, Park SY, Kim SY, Soh MS (2006) Overexpression of PRE1 and its homologous genes activates Gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol 47:591–600

    Article  PubMed  CAS  Google Scholar 

  • Lespinasse Y (1992) Le pommier. In: Gallais A, Bannerot H (eds) Amélioration des espèces végétales cultivées, objectifs et critères de sélection. INRA Editions, Paris, pp 579–594

    Google Scholar 

  • Lespinasse JM, Delort JF (1986) Apple tree management in vertical axis: appraisal after ten years of experiments. Acta Hortic 160:139–155

    Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    PubMed  CAS  Google Scholar 

  • Moriya S, Iwanami H, Kotoda N, Takahashi S, Yamamoto T, Abe K (2009) Development of a marker-assisted selection system for columnar growth habit in apple breeding. J Jpn Soc Hortic Sci 78:279–287

    Article  CAS  Google Scholar 

  • Moriya S, Okada K, Haji T, Yamamoto T, Abe K (2012) Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus x domestica Borkh.) linkage group 10. Plant Breed 131:641–646

    Article  CAS  Google Scholar 

  • Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999) Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol Gen Genet 262:884–891

    Article  PubMed  CAS  Google Scholar 

  • Sablowski RW, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103

    Article  PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomics 2:202–224

    Article  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  PubMed  CAS  Google Scholar 

  • Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32:309–312

    Article  Google Scholar 

  • Suresh BM, Hampapathalu AN (2007) IMEx: imperfect microsatellite extractor. Bioinformatics 23:1181–1187

    Article  Google Scholar 

  • Tani E, Tsaballa A, Stedel C, Kalloniati C, Papaefthimiou D, Polidoros A, Darzentas N, Ganopoulos I, Flemetakis E, Katinakis P, Tsaftaris A (2011) The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development. Plant Physiol Biochem 49:654–663

    Article  PubMed  CAS  Google Scholar 

  • Tao Q, Wang A, Zhang HB (2002) One large-insert plant-transformation-competent BIBAC library and three BAC libraries of Japonica rice for genome research in rice and other grasses. Theor Appl Genet 105:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Tian YK, Wang CH, Zhang JS, James C, Dai HY (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145:181–188

    Article  CAS  Google Scholar 

  • Tobutt KR (1985) Breeding columnar apples at East Malling. Acta Hortic 159:63–68

    Google Scholar 

  • Troggio M, Gleave A, Salvi S, Chagné D, Cestaro A, Kumar S, Crowhurst RN, Gardiner SE (2012) Apple, from genome to breeding. Tree Genet Genomics 8(3):509–529

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0. Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Vezzulli S, Troggio M, Coppola G, Jermakow A, Cartwright D, Zharkikh A, Stefanini M, Grando MS, Viola R, Adam-Blondon AF, Thomas M, This P, Velasco R (2008) A reference integrated map for cultivated grapevine (Vitis vinifera L.) from three crosses, based on 283 SSR and 501 SNP-based markers. Theor Appl Genet 117:499–511

    Article  PubMed  CAS  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi K, Tatematsu K, Yano R, Preston J, Kitamura S, Takahashi H, McCourt P, Kamiya Y, Nambara E (2009) CHOTTO1, a double AP2 domain protein of Arabidopsis thaliana, regulates germination and seedling growth under excess supply of glucose and nitrate. Plant Cell Physiol 50:330–340

    Article  PubMed  CAS  Google Scholar 

  • Yano R, Kanno Y, Jikumaru Y, Nakabayashi K, Kamiya Y, Nambara E (2009) CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiol 151:641–654

    Article  PubMed  CAS  Google Scholar 

  • Zhang YG, Dai HY (2011) Comparison of photosynthetic and morphological characteristics, and microstructure of roots and shoots, between columnar apple and standard apple trees of hybrid seedlings. PHYTON 80:119–125

    Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Cao G, Qu LJ, Gu H (2009) Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15. J Genet Genomics 36:99–107

    Article  PubMed  Google Scholar 

  • Zhu YD, Zhang W, Li GC, Wang T (2007) Evaluation of inter-simple sequence repeat analysis for mapping the Co gene in apple (Malus pumila Mill.). J Hortic Sci Biotechnol 82:371–376

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Pierluigi Magnago for his most essential contribution in developing the segregating populations and Luca Pinelli for his technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Baldi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, P., Wolters, P.J., Komjanc, M. et al. Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Mol Breeding 31, 429–440 (2013). https://doi.org/10.1007/s11032-012-9800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9800-1

Keywords

Navigation