MapDisto: fast and efficient computation of genetic linkage maps


Several options are available to the scientific community for genetic map construction but few are simple to install and use. Available programs either lack intuitive interface or are commercial, expensive for many laboratories. We present MapDisto, a free, user-friendly and powerful program for constructing genetic maps from experimental segregating populations. MapDisto is freely available at Current version: 1.7.5.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Allard RW (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278

    Google Scholar 

  2. Bailey NTJ (1949) The estimation of linkage with differential viability, II and III. Heredity 3:220–228

    Article  Google Scholar 

  3. Garavito A, Guyot R, Lozano J, Gavory F, Samain S, Panaud O, Tohme J, Ghesquiere A, Lorieux M (2010) A genetic model for the female sterility barrier between Asian and African cultivated rice species. Genetics 185(4):1425–1440

    PubMed  Article  CAS  Google Scholar 

  4. Holloway J, Knapp SJ (1994) Gmendel 3.0 users guide.

  5. Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Google Scholar 

  6. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    PubMed  Article  CAS  Google Scholar 

  7. Lorieux M, Goffinet B, Perrier X, González de León D, Lanaud C (1995a) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80

    Google Scholar 

  8. Lorieux M, Perrier X, Goffinet B, Lanaud C, González de León D (1995b) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90:81–89

    Google Scholar 

  9. Manly KF, Cudmore RH, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12(12):930–932

    PubMed  Article  CAS  Google Scholar 

  10. Mester DI, Ronin YI, Minkov D, Nevo E, Korol AB (2003) Constructing large scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269–2282

    PubMed  CAS  Google Scholar 

  11. Rebai A, Goffinet B, Mangin B (1995) Comparing power of different methods for QTL detection. Biometrics 51(1):87–99

    PubMed  Article  CAS  Google Scholar 

  12. Schiex T, Gaspin C (1997) CARTHAGENE: constructing and joining maximum likelihood genetic maps. In: Proceedings of ISMB (1997), pp 258–267

  13. Stam P (1993) Construction of integrated genetic-linkage maps by means of a new computer package—Joinmap. Plant J 3(5):739–744

    Article  CAS  Google Scholar 

  14. Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112(1):30–40. doi:10.1007/S00122-005-0097-X

    PubMed  Article  CAS  Google Scholar 

  15. Wu YH, Bhat P, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4(10):e1000212

    PubMed  Article  Google Scholar 

  16. Wu JX, Jenkins JN, McCarty JC, Lou XY (2011) Comparisons of four approximation algorithms for large-scale linkage map construction. Theor Appl Genet 123(4):649–655. doi:10.1007/S00122-011-1614-8

    PubMed  Article  Google Scholar 

Download references


My thanks go to Ian Mackay, Jean-François Rami, Stéphane Dussert and Denis Lespinasse for their kind help and advice.

Conflict of interest

None declared.

Author information



Corresponding author

Correspondence to Mathias Lorieux.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lorieux, M. MapDisto: fast and efficient computation of genetic linkage maps. Mol Breeding 30, 1231–1235 (2012).

Download citation


  • Genetic mapping
  • Segregation distortion
  • Locus ordering algorithms
  • Molecular markers
  • Maximum likelihood
  • Genotyping errors