Molecular Breeding

, Volume 30, Issue 2, pp 1231–1235 | Cite as

MapDisto: fast and efficient computation of genetic linkage maps

Short communication

Abstract

Several options are available to the scientific community for genetic map construction but few are simple to install and use. Available programs either lack intuitive interface or are commercial, expensive for many laboratories. We present MapDisto, a free, user-friendly and powerful program for constructing genetic maps from experimental segregating populations. MapDisto is freely available at http://mapdisto.free.fr/DL/. Current version: 1.7.5.

Keywords

Genetic mapping Segregation distortion Locus ordering algorithms Molecular markers Maximum likelihood Genotyping errors 

References

  1. Allard RW (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278Google Scholar
  2. Bailey NTJ (1949) The estimation of linkage with differential viability, II and III. Heredity 3:220–228CrossRefGoogle Scholar
  3. Garavito A, Guyot R, Lozano J, Gavory F, Samain S, Panaud O, Tohme J, Ghesquiere A, Lorieux M (2010) A genetic model for the female sterility barrier between Asian and African cultivated rice species. Genetics 185(4):1425–1440PubMedCrossRefGoogle Scholar
  4. Holloway J, Knapp SJ (1994) Gmendel 3.0 users guide. http://www.css.orst.edu/G-Mendel/Default.htm
  5. Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789Google Scholar
  6. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  7. Lorieux M, Goffinet B, Perrier X, González de León D, Lanaud C (1995a) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80Google Scholar
  8. Lorieux M, Perrier X, Goffinet B, Lanaud C, González de León D (1995b) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90:81–89Google Scholar
  9. Manly KF, Cudmore RH, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12(12):930–932PubMedCrossRefGoogle Scholar
  10. Mester DI, Ronin YI, Minkov D, Nevo E, Korol AB (2003) Constructing large scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269–2282PubMedGoogle Scholar
  11. Rebai A, Goffinet B, Mangin B (1995) Comparing power of different methods for QTL detection. Biometrics 51(1):87–99PubMedCrossRefGoogle Scholar
  12. Schiex T, Gaspin C (1997) CARTHAGENE: constructing and joining maximum likelihood genetic maps. In: Proceedings of ISMB (1997), pp 258–267Google Scholar
  13. Stam P (1993) Construction of integrated genetic-linkage maps by means of a new computer package—Joinmap. Plant J 3(5):739–744CrossRefGoogle Scholar
  14. Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112(1):30–40. doi:10.1007/S00122-005-0097-X PubMedCrossRefGoogle Scholar
  15. Wu YH, Bhat P, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4(10):e1000212PubMedCrossRefGoogle Scholar
  16. Wu JX, Jenkins JN, McCarty JC, Lou XY (2011) Comparisons of four approximation algorithms for large-scale linkage map construction. Theor Appl Genet 123(4):649–655. doi:10.1007/S00122-011-1614-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.UMR DIADEInstitut de Recherche pour le Développement (IRD)Montpellier Cedex 5France
  2. 2.Rice Genetics and Genomics LaboratoryInternational Center for Tropical Agriculture (CIAT)CaliColombia

Personalised recommendations