Skip to main content
Log in

Development of new microsatellite markers (SSRs) for Humulus lupulus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The number of informative markers available for hops currently limits breeding progress. Biotechnological improvement of hops therefore would benefit from a larger number of informative molecular markers. We expanded the pool of putative markers by developing new primer sets for SSR regions from genomic DNA extracted from eight US hop cultivars. From a library of 10,581 previously published hop ESTs we identified 1,007 SSRs. The SSRs were derived from 4,953 unique transcripts, consisting of 1,422 contigs and 3,531 singletons. Among them we identified 274 dinucleotide repeats, 519 trinucleotide repeats, 87 tetranucleotide repeats and 127 pentanucleotide repeats. Amplified bands were separated by agarose gel or capillary electrophoresis and visually scored for presence or absence of bands. Between 503 and 663 SSR amplifications were successful, depending on cultivar. Overall 952 (95.8%) of 1,007 SSRs were amplified successfully. As a demonstration of utility, a cluster analysis showed substantial congruence to previous studies of the cultivar’s genetic distances. The large number of demonstrated SSRs have the potential to increase the quality of molecular marker mapping experiments by increasing the map-density of markers. The SSRs presented have been selected for robustness of amplification and should, thus, be most useful in other laboratories. The primers and method to generate these polymorphic SSRs are presented here and have been deposited in Genbank (10315689–10316695, ProbeDB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bacher J, Schumm J (1998) Development of highly polymorphic pentanucleotide tandem repeat loci with low stutter. Profiles DNA 2(2):3–6

    Google Scholar 

  • Bassil NV, Gilmore B et al (2008) Genic SSRs for European and North American hop (Humulus lupulus L.). Genet Resour Crop Evol 55:959–969

    Article  Google Scholar 

  • Bohr G, Gerhauser C et al (2005) Anti-inflammatory acylphloroglucinol derivatives from Hops (Humulus lupulus). J Nat Prod 68(10):1545–1548

    Article  PubMed  CAS  Google Scholar 

  • Cardle L, Ramsay L et al (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156(2):847–854

    PubMed  CAS  Google Scholar 

  • Carter KW, Westmark ER et al (1983) Transport of the sick neonate. J Fla Med Assoc 70(9):774–778

    PubMed  CAS  Google Scholar 

  • Cerenak A, Jakse J et al (2004) Identification and differentiation of hop varieties using simple sequence repeat markers. J Am Soc Brewing Chem 62(1):1–7

    CAS  Google Scholar 

  • Dai X, Wang G et al (2009) TrichOME: a comparative Omics database for plant trichomes. Retrieved Feb 2010, from http://www.planttrichome.org/trichomedb/

  • Derenne P (1954) Au sujet des chromosomes sexuels du Houbloun. Bull Inst Agro de Gembloux 22:18–23

    Google Scholar 

  • Diwan N, Cregan PB (1997) Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95:723–733

    Article  CAS  Google Scholar 

  • Eisemann B et al (2004) Pedigree-based genome mapping for marker-assisted selection and recurrent parent recovery in wheat and barley. In: 4th international crop science congress. Brisbane, Australia

  • Fiesta (2008) EST database, FIESTA 1.0 beta. Retrieved Accessed March 2009, from http://www.bioinfo.pbi.nrc.ca/newest.beta2/login.html

  • Genebank (2009) Genebank and ProbeDB database. Retrieved Aug 2009, from http://www.ncbi.nlm.nih.gov/Genbank/index.html

  • Gupta PK, Rustgi S et al (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270(4):315–323

    Article  PubMed  CAS  Google Scholar 

  • Hearne CM, Ghosh S et al (1992) Microsatellites for linkage analysis of genetic traits. Trends Genet 8(8):288–294

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Christopher JT et al (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71

    Article  CAS  Google Scholar 

  • Jacobsen P (1957) The sex chromosomes in Humulus lupulus. Hereditas 43:357–370

    Article  Google Scholar 

  • Jakse J, Kindlhofer K et al (2001) Assessment of genetic variation and differentiation of hop genotypes by microsatellite and AFLP markers. Genome 44(5):773–782

    Article  PubMed  CAS  Google Scholar 

  • Jakse J, Bandelj D et al (2002) Eleven new microsatellites for hop (Humulus lupulus L.). Mol Ecol Notes 2(4):544–546

    Article  CAS  Google Scholar 

  • Jakse J, Luthar Z et al (2008) New polymorphic dinucleotide and trinucleotide microsatellite loci for hop Humulus lupulus L. Mol Ecol Resour 8(4):769–772

    Article  PubMed  CAS  Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    Google Scholar 

  • Jun T-H, Van K et al (2007) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162(2):179–191

    Article  Google Scholar 

  • Kantety RV, La Rota M et al (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48(5–6):501–510

    Article  PubMed  CAS  Google Scholar 

  • Kobljski B, Denčić S et al (2007) Potential uses of microsatellites in marker-assisted selection for improved grain yield in wheat. Wheat Production in Stressed Environments. Springer, Netherlands, pp 729–736

    Google Scholar 

  • Kruglyak S, Durrett RT et al (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95(18):10774–10778

    Article  PubMed  CAS  Google Scholar 

  • Matousek J, Novak P et al (2002) Cloning and characterisation of chs-specific DNA and cDNA sequences from hop (Humulus lupulus L.). Plant Sci 162:1007–1018

    Article  CAS  Google Scholar 

  • Murakami A, Darby P et al (2006) Microsatellite DNA analysis of wild hops, Humulus lupulus L. Genet Resour Crop Evol 53:1553–1562

    Article  CAS  Google Scholar 

  • Nagel J, Culley LK et al (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20(1):186–200

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Ito K (2001) Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.). Biosci Biotechnol Biochem 65(1):150–155

    Article  PubMed  CAS  Google Scholar 

  • Patzak J (2002) Characterization of Czech hop (Humulus lupulus L) genotypes by molecular methods. Tostlinna Vyroba 48(8):343–350

    CAS  Google Scholar 

  • Probe (2010) Simple sequence repeats (SSR) probe UNI2010. NCBI

  • Queller DC, Strassman JE et al (1993) Microsatellites and Kinship. Trends Ecol Evol 8(8):285–288

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Karaca M et al (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130(3):355–364

    Article  CAS  Google Scholar 

  • Scott KD, Eggler P et al (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100(5):723–726

    Article  CAS  Google Scholar 

  • Seefelder S, Ehrmaier H et al (2000) Male and female genetic linkage map of hops (Humulus lupulus). Plant Breed 119:249–255

    Article  CAS  Google Scholar 

  • Semagn K, Bjørnstad A et al (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5(25):2540–2568

    CAS  Google Scholar 

  • Stagel A, Portis E et al (2008) Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics 9:357

    Article  PubMed  Google Scholar 

  • Stajner N, Jernej J et al (2005) The isolation and characterization of microsatellites in hop (Humulus lupulus L.). Plant Sci 168:213–221

    Article  CAS  Google Scholar 

  • Stevens JF, Page J (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65:1317–1330

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, DeClerck G et al (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11(8):1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Toth G, Gaspari Z et al (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7):967–981

    Article  PubMed  CAS  Google Scholar 

  • USDA (2011) National Germplasm Resources Laboratory. Retrieved Feb 2011, from http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?19415. (Online Database)

  • Varshney RK, Thiel T et al (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol 7(2A):537–546

    CAS  Google Scholar 

  • Wang G, Tian L et al (2008) Terpene biosynthesis in glandular trichomes of hop. Plant Physiol 148(3):1254–1266

    Article  PubMed  CAS  Google Scholar 

  • Winge O (1923) On sex chromosome, sex determination and preponderance of females in some dioecious plants. Compt Rend Trav Lab Carlsberg 15:1–26

    Google Scholar 

  • Wright LJ, CDB et al (2003) Phenotypic associative microsatellite (SSR) marker assisted selection. http://wheat.pw.usda.gov/pubs/2003/Wright/

  • Zeng L, Meredith WR et al (2009) Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. Theor Appl Genet 119(1):93–103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Hopsteiner, S.S. Steiner, Inc. Jared Koelling received additional grant support from the University of Northern Iowa (SOAR grant, CNS Dean’s Office grant, summer undergraduate research grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Schwekendiek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2011_9637_MOESM1_ESM.pdf

Online Resource 1: List of SSR repeats by motif, type and bp length. Trinucleotide repeats were the most frequent (519) followed by dinucleotide (275), tetranucleotide (88), and then pentanucleotide (125). The four most frequent dinucleotide repeats motifs were TA (64), AT (60), TC (48), CT (40). The three most frequent trinucleotide repeat motifs were TCT (39), GAA (33), and AAG (26). (PDF 124 kb)

11032_2011_9637_MOESM2_ESM.pdf

Online Resource 2: Description of SSR markers. 1,007 SSRs identified from 10,581 published ESTs using software Gramene SSRtool (Temnykh et al. 2001). Forward and reverse primers were identified with Primer3 software (Temnykh et al. 2001). 952 SSRs amplified successfully. Accessions numbers marked with asterisk (*) showed amplification. The sequences of all 1007 SSRs are stored in Genebank (ProbeDB). (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koelling, J., Coles, M.C., Matthews, P.D. et al. Development of new microsatellite markers (SSRs) for Humulus lupulus . Mol Breeding 30, 479–484 (2012). https://doi.org/10.1007/s11032-011-9637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9637-z

Keywords

Navigation