Skip to main content

Advertisement

Log in

Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing d-galacturonic acid reductase gene in response to various abiotic stresses

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Upregulation of the antioxidant enzyme system in plants provides protection against various abiotic stresses. Transgenic potato plants overexpressing the strawberry d-galacturonic acid reductase (GalUR) gene with enhanced accumulation of ascorbate (AsA) were used to study the antioxidant system involving the ascorbate–glutathione cycle in order to understand the tolerance mechanism in plants in response to various abiotic stresses under in vitro conditions. Transgenic potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed enhanced activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.1.1.1.6) and enzymes of the ascorbate–glutathione cycle such as ascorbate peroxidase (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.8.1.7), as well as increased levels of ascorbate, glutathione (GSH) and proline when compared to untransformed tubers. The increased enzyme activities correlated with the mRNA transcript levels in the stressed transgenic tubers. Significant differences in redox status of AsA and GSH were also observed in stressed transgenic potato tubers that showed increased tolerance to abiotic stresses compared to untransformed tubers. This study suggests that the increased accumulation of AsA could upregulate the antioxidant system which imparts improved tolerance against various abiotic stresses in transgenic tubers compared to untransformed tubers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

GalUR:

d-galacturonic acid reductase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

MDA:

Malondialdehyde

MDHAR:

Monodehydroascorbate reductase

MV:

Methyl viologen

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

ZnCl:

Zinc chloride

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:21–126

    Google Scholar 

  • Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Radicals BioMed 23:473–479

    Article  CAS  Google Scholar 

  • Alscher RG, Donahue JL, Crammer CL (1997) Reactive oxygen species and antioxidants: relationship in green cells. Plant Physiol 100:224–233

    Article  CAS  Google Scholar 

  • Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N (1995) Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol 36:1687–1691

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134:1784–1792

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Yu JP, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    Article  PubMed  CAS  Google Scholar 

  • Bates LE, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benavides MP, Marconi PL, Gallego SM, Comba ME, Tomaro ML (2000) Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum. Aust J Plant Physiol 27:273–278

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Burkey KO, Eason G (2002) Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast. Physiol Plant 114:387–394

    Article  PubMed  CAS  Google Scholar 

  • Cao YJ, Wei Q, Liao Y, Song HL, Li X, Xiang CB, Kuai BK (2009) Ectopic overexpression of AtHDG11 in tall fescue resulted in enhanced tolerance to drought and salt stress. Plant Cell Rep 28:579–588

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Todd E, Ling YJ, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 3:9970–9974

    Article  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palme JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection: a role for the xanthophylls zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Eskling M, Arvidsson PO, Akerlund HE (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100:806–816

    Article  CAS  Google Scholar 

  • Finazzi-Agro A, Di Giulio A, Amicosante G, Crifo C (1986) Photohemolysis of erythrocytes enriched with superoxide dismutase, catalase, and glutathione peroxidae. Photochem Photobiol 43:409–412

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Lelandais M (1996) A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J Plant Physiol 148:391–398

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisome and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effect of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance in photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Freebairn HT, Taylor OC (1960) Prevention of plant damage from airborne oxidising agents. Proc Am Soc Hort Sci 76:693–699

    CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Ann Biochem 106:207–212

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hemavathi, Upadhyaya CP, Ko EY, Nookaraju A, Kim HS, Heung JJ, Oh MO, Reddy AC, Chun SC, Kim DH, Park SW (2009) Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  Google Scholar 

  • Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  CAS  Google Scholar 

  • Kampfenkel K, Van Montagu M, Inze D (1995) Effect of iron excess on Nicotiana plumbaginifolia plants. Implications to oxidative stress. Plant Physiol 107:725–735

    PubMed  CAS  Google Scholar 

  • Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD (2002) Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen mediated oxidative stress. Plant Cell Environ 25:873–882

    Article  Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Mishkind M, Vierling E (2005) Plant responses to high temperature. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Lee EH (1991) Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress. Chronobiol Int 8:93–102

    Article  PubMed  CAS  Google Scholar 

  • Lee EH, Jersey JA, Gifford C, Bennett J (1984) Differential ozone tolerance in soybean and snapbeans: analysis of ascorbic acid in O3-susceptible and O3-resistant cultivars by high performance liquid chromatography. Environ Exp Bot 24:331–341

    Article  CAS  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193–210

    Article  CAS  Google Scholar 

  • Ma FW, Cheng LL (2004) Exposure of the shaded side of apple fruit to full sun leads to upregulation of both xanthophyll cycle and the ascorbate-glutathione cycle. Plant Sci 166:1479–1486

    Article  CAS  Google Scholar 

  • May M, Leaver CJ (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension-cultures. Plant Physiol 103:621–627

    PubMed  CAS  Google Scholar 

  • McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839–847

    Article  PubMed  CAS  Google Scholar 

  • Mora-Herrera ME, Lopez-Delgado HA (2007) Freezing tolerance and antioxidant activity in potato microplants induced by abscisic acid treatment. Am J Potato Res 84:467–475

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Navari-Izzo F, Rascio N (1999) Plant response to water-deficit conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker Inc, New York, pp 231–270

    Chapter  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrometric method for the determination of superoxide dismutase activity in tissue extracts. Ann Biochem 54:536–541

    Article  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303

    Article  PubMed  CAS  Google Scholar 

  • Payton P, Allen RD, Trolinder N, Holaday AS (1997) Over-expression of chloroplast-targeted Mn superoxide dismutase in cotton (Gossypium hirsutum L., cv. Coker 312) does not alter the reduction of photosynthesis after short exposures to low temperature and high light intensity. Photosyn Res 52:233–244

    Article  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  PubMed  CAS  Google Scholar 

  • Rahnama H, Ebrahimzadeh H (2005) The effect of NaCl on antioxidant enzyme activities in potato seedling. Biol Planta 49:93–97

    Article  CAS  Google Scholar 

  • Rautenkranz AAF, Li L, Michler F, Mgxtinoia E, Oertli JJ (1994) Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgate L. cv Gerbel) leaves. Plant Physiol 106:187–193

    PubMed  CAS  Google Scholar 

  • Sanmartin M, Drogoudi PA, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    PubMed  CAS  Google Scholar 

  • Scott MD, Meshnick SR, Eaton JW (1987) Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity. J Biol Chem 262:3640–3645

    PubMed  CAS  Google Scholar 

  • Sen-Gupta A, Heinen J, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211

    PubMed  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494

    Article  PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and functions of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1311

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd, Oxford, pp 53–86

    Chapter  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Plant Sci 19:267–290

    Article  CAS  Google Scholar 

  • Thomas CE, McLean LR, Parker RA, Ohlweiler DF (1992) Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids 27:543–550

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga T, Miyahara K, Tabata K, Esaka M (2005) Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L-galactono-1, 4-lactone dehydrogenase. Planta 220:854–863

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Konkuk University research fund. The research fellowship from Konkuk University to Hemavathi as research fellow is gratefully acknowledged. We thank Mayank A. Gururani and Shashank K. Pandey for experimental assistance and proof-reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chandrama Prakash Upadhyaya or Se Won Park.

Additional information

Hemavathi and Chandrama Prakash Upadhyaya contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2010_9465_MOESM1_ESM.tif

Fig. A. Antioxidant defense system in plants (Halliwell-Asada pathway; modified from Bowler et al. 1992). The dismutation of superoxide radicals (O2 ) occurs in this pathway. APX-ascorbate peroxidase; DHAR-dehydroascorbate reductase; GR-glutathione reductase; GSH-glutathione (red.); GSSG-glutathione (ox.); SOD-superoxide dismutase (TIFF 176 kb)

11032_2010_9465_MOESM2_ESM.tif

Fig. B. Quantitative real time PCR analysis of antioxidant protein gene expression profiling during various stress treatments. The cDNA was normalized in dependence of the transcript level of actin mRNA. Antioxidant enzyme gene expression in transformed and untransformed potato tubers under control conditions (A), Methyl viologen i.e. Oxidative stress (B); NaCl i.e. salt stress (C) and ZnCl i.e. heavy metal stress (D). The values are presented as the mean ± SEM of three replicates (TIFF 201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemavathi, Upadhyaya, C.P., Akula, N. et al. Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing d-galacturonic acid reductase gene in response to various abiotic stresses. Mol Breeding 28, 105–115 (2011). https://doi.org/10.1007/s11032-010-9465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9465-6

Keywords

Navigation