Recent advances in arsenic accumulation and metabolism in rice

Abstract

Arsenic is commonly present in subsoil and is a carcinogen in humans. Rice takes up arsenic and it accumulates in different plant parts, including grains, at levels several-fold higher than the soil. In high arsenic regions, rice can contribute substantially to arsenic intake by the human population. Arsenic in rice grains is present in the carcinogenic inorganic or the relatively safer organic (methylated) form. A wide variation is noticed in different rice genotypes with respect to the proportion of arsenic in these forms in grains. Mechanisms involved in arsenic uptake, efflux from roots, loading into xylem, transport, partitioning, arsenate reduction, arsenic sequestration in vacuoles, volatilization from leaves, accumulation in grains etc. are poorly understood. Selection of cultivars accumulating low inorganic arsenic is an important trait to be used by breeders to develop rice varieties safer for cultivation in arsenic-contaminated regions. Systematic efforts have not been made to screen rice genotypes for mining the genes involved in arsenic uptake, transport and accumulation in grains. Identification of rice germplasm with varying arsenic uptake and partitioning, and development of mapping populations with contrasting grain arsenic, are required for association studies and QTL mapping for accelerating rice improvement. Efforts on gene expression profiling, deep transcriptome sequencing, high throughput metabolomics and phenotyping of contrasting arsenic accumulating lines need to be increased to develop strategies for design of safer rice varieties. Network research projects need to be developed along these approaches to accelerate the development of crop varieties safer for farming in arsenic-contaminated environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adomako EE, Solaiman ARM, Williams PN et al (2009) Enhanced transfer of arsenic to grain for Bangladesh grown rice compared to US and EU. Environ Int 35:476–479

    Article  CAS  PubMed  Google Scholar 

  2. Agrama HA, Yan WG (2009) Association mapping of straighthead disorder induced by arsenic in Oryza sativa. Plant Breed. doi:10.1111/j.1439-0523.2009.01631.x

  3. Ahmed KM, Bhattacharya P, Hasan MA et al (2004) Arsenic enrichment in groundwater of alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200

    Article  CAS  Google Scholar 

  4. Ahsan N, Lee DG, Alam I (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    Article  CAS  PubMed  Google Scholar 

  5. Bienert GP, Thorsen M, Schüssler MD (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Plant Biol 6:26

    Google Scholar 

  6. Bleeker PM, Hakvoort HWJ, Bliek M et al (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    Article  CAS  PubMed  Google Scholar 

  7. Bogdan K, Schenk MK (2008) Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol 42:7885–7890

    Article  CAS  PubMed  Google Scholar 

  8. Booth B (2008) Arsenic speciation varies with type of rice. Environ Sci Technol 42:3484–3485

    Article  CAS  PubMed  Google Scholar 

  9. Brammer H, Ravenscroft P (2008) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35:647–654

    Article  PubMed  CAS  Google Scholar 

  10. Carbonell-Barrachina AA, Burlo F, Mataix J (1995) Arsenic uptake, distribution and accumulation in tomato plants: effect of arsenite on plant growth and yield. J Plant Nutr 18:1237–1250

    Article  Google Scholar 

  11. Carey AM, Scheckel KG, Lombi E et al. (2009) Grain unloading of arsenic species in rice (Oryza sativa L.). Plant Physiol. doi:10.1104/pp.109.146126

  12. Chakrabarty D, Trivedi PK, Misra P et al (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, Zhu YG, Liu WJ et al (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol 165:91–97

    Article  CAS  PubMed  Google Scholar 

  14. Clark GT, Dunlop J, Phung HT (2000) Phosphate absorption by Arabidopsis thaliana: interactions between phosphorus status and inhibition by arsenate. Aust J Agric Res 27:959–965

    CAS  Google Scholar 

  15. Colmer TD (2003) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot 91:301–309

    Article  CAS  PubMed  Google Scholar 

  16. Dallagnol LJ, Rodrigues FA, Mielli MVB et al (2009) Defective active silicon uptake affects some components of rice resistance to brown spot. Phytopathology 99:116–121

    Article  CAS  PubMed  Google Scholar 

  17. Dasgupta T, Hossain SA, Meharag AA et al (2004) An arsenate tolerance gene on chromosome 6 of rice. New Phytol 163:45–49

    Article  CAS  Google Scholar 

  18. Dhankher OP, Rosen BP, McKinney EC et al (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). PNAS 130:5413–5418

    Article  CAS  Google Scholar 

  19. Ding YF, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophy Res Commu (in press). doi:10.1016/j.bbrc.2009.05.137

  20. Duan GL, Zhou Y, Tong YP et al (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174:311–321

    Article  CAS  PubMed  Google Scholar 

  21. Duxbury JM, Panaullah G (2007) Remediation of arsenic for agriculture sustainability, food security and health in Bangladesh. FAO water working paper, Rome http://www.fao.org/nr/water/docs/FAOWATER_ARSENIC.pdf

  22. Duxbury JM, Zavala YJ (2005) What are safe levels of arsenic in food and soils? In: Behavior of arsenic in aquifers, soils and plants (Conference Proceedings), International Symposium, Dhaka

  23. Enright AJ, John B, Gaul U et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed  Google Scholar 

  24. Farid ATM, Sen R, Haque MA, Panaullah GM et al. (2005) Arsenic status of water, soil, rice grain and straw of individual shallow tube well command area of Brahmanbaria. In: Behavior of arsenic in aquifers, soils and plants (Conference Proceedings), Dhaka

  25. Greipsson S (1994) Effects of iron plaque on roots of rice on growth and metal concentration of seeds and plant tissues when cultivated in excess copper. Commun Soil Sci Plant Anal 25:2761–2769

    Article  CAS  Google Scholar 

  26. Grispena VMJ, Irtelli B, Hakvoorta HJ et al (2009) Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivity and root to shoot translocation in tobacco. Environ Exp Bot 66:69–73

    Article  CAS  Google Scholar 

  27. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  28. Hansel CM, Fendorf S, Sutton S et al (2001) Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35:3863–3868

    Article  CAS  PubMed  Google Scholar 

  29. Heikens A (2006) Arsenic contamination of irrigation water, soils and crops in Bangladesh: risk implications for sustainable agriculture and food safety in Asia. FAO, Bangkok ISBN 974-9746-88-2

    Google Scholar 

  30. Hossain MB, Jahiruddin M, Loeppert RH et al (2009) The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167–176

    Article  CAS  Google Scholar 

  31. IARC (2004) Monographs on the evaluation of carcinogenic risks to humans. Some drinking-water disinfectants and contaminants, including arsenic, vol 84, 512 pp

  32. Jahiruddin M, Islam MR, Shah MAL et al. (2005) Arsenic in the water–soil–crop systems: PETRRA-BRRI-BAU-AAS study. In: Behavior of arsenic in aquifers, soils and plants (Conference Proceedings), Dhaka

  33. Jha B, Dubey RS (2004) Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. J Plant Physiol 161:867–872

    Article  CAS  PubMed  Google Scholar 

  34. Lee DA, Chen A, Schroeder JI (2003) ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. Plant J 35:637–646

    Article  CAS  PubMed  Google Scholar 

  35. Lee JS, Lee SW, Chon HT et al (2008) Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au–Ag mine site, Korea. J Geochem Exploration 96:231–235

    Article  CAS  Google Scholar 

  36. Li RY, Ago Y, Liu WJ et al. (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol (in press)

  37. Liu J, Chen H, Miller DS et al (2001) Overexpression of glutathione S-transferase II and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol 60:302–309

    CAS  PubMed  Google Scholar 

  38. Liu WJ, Zhu YG, Smith FA et al (2004a) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot 55:1707–1713

    Article  CAS  PubMed  Google Scholar 

  39. Liu WJ, Zhu YG, Smith FA, Smith SE et al (2004b) Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytol 162:481–488

    Article  CAS  Google Scholar 

  40. Liu Z, Boles E, Rosen BP (2004c) Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279:17312–17318

    Article  CAS  PubMed  Google Scholar 

  41. Liu WJ, Zhu YG, Hu Y et al (2006a) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736

    Article  CAS  PubMed  Google Scholar 

  42. Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP et al (2006b) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351:424–430

    Article  CAS  PubMed  Google Scholar 

  43. Logoteta B, Xu XY, Macnair MR (2009) Arsenite efflux is not enhanced in the arsenate-tolerant phenotype of Holcus lanatus. New Phytol (in press). doi:10.1111/j.1469-8137.2009.02841.x

  44. Lu Y, Adomako EurekaE, RM A et al (2009) Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice. Environ Sci Technol 43:1724–1729

    Article  CAS  PubMed  Google Scholar 

  45. Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  CAS  PubMed  Google Scholar 

  46. Manju S, Smita K, Chakrabarty D et al (2009) Effect of arsenic on growth, oxidative stress and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  Google Scholar 

  47. Meacher DM, Menzel DB, Dillencourt MD et al (2002) Estimation of multimedia inorganic arsenic intake in the US population. Hum Ecol Risk Assess 8:1697–1721

    Article  CAS  Google Scholar 

  48. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–44

    Article  CAS  Google Scholar 

  49. Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  50. Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  PubMed  Google Scholar 

  51. Meharg AA, Williams PN, Schekel K et al (2008) Speciation of arsenic differs between white and brown rice grain. Environ Sci Technol 42:1051–1057

    Article  CAS  PubMed  Google Scholar 

  52. Meharg AA, Williams PN, Adomako E et al (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  PubMed  Google Scholar 

  53. Mei XQ, Yea ZH, Wong MH (2009) The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environ Poll 157:2550–2557

    Article  CAS  Google Scholar 

  54. Miah MAM, Rahman MS, Islam A et al. (2005) Nationwide survey of arsenic in soils, water and crops in Bangladesh. In: Behavior of arsenic in aquifers, soils and plants (Conference Proceedings), Dhaka

  55. Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163:927–936

    Article  CAS  PubMed  Google Scholar 

  56. Mondal D, Polya DA (2008) Rice is a major exposure route for arsenic in Chakdah block, Nadia district, West Bengal, India: a probabilistic risk assessment. Appl Geochem 23:2967–2987

    Article  CAS  Google Scholar 

  57. Mudge SR, Rae AL, Diatloff E et al (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353

    Article  CAS  PubMed  Google Scholar 

  58. Mukherjee AB, Bhattacharya P, Jacks G (2006) Groundwater arsenic contamination in India: extent and severity. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P et al (eds) Managing arsenic in the environment: from soil to human health. CSIRO Publishing, Melbourne, pp 533–594

    Google Scholar 

  59. Nocito FF, Lancilli C, Crema B et al (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  CAS  PubMed  Google Scholar 

  60. Norton GJ, Lou-Hing DE, Meharg AA et al (2008a) Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  CAS  PubMed  Google Scholar 

  61. Norton GJ, Meher Nigar M, Williams PN et al (2008b) Rice–arsenate interactions in hydroponics: a three-genemodel for tolerance. J Exp Bot 59:2277–2284

    Article  CAS  PubMed  Google Scholar 

  62. Norton GJ, Duan G, Dasgupta T et al. (2009) Environmental and genetic control of arsenic accumulation and speciation in rice grain: comparing a range of common cultivars grown in contaminated sites across Bangladesh, China and India. Environ Sci Technol (in press). doi:10.1021/es901844q

  63. National Research Council (NRC) (2001) Arsenic in drinking water. Board on Environmental Studies and Toxicology (BEST). Division on Earth and Life Sciences, National Academy Press, Washington, DC, 226 pp

  64. Okumura S, Mitsukawa N, Shirano Y et al (1998) Phosphate transporter gene family of Arabidopsis thaliana. DNA Res 5:261–269

    Article  CAS  PubMed  Google Scholar 

  65. Otte ML, Rozema J, Koster L et al (1989) Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake. New Phytol 111:309–317

    Article  CAS  Google Scholar 

  66. Paszkowski U, Kroken S, Roux C et al (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  CAS  PubMed  Google Scholar 

  67. Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  68. Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515

    Article  CAS  PubMed  Google Scholar 

  69. Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–802

    Article  PubMed  Google Scholar 

  70. Schoof RA, Yost LJ, Eickhoff J et al (1999) A market basket survey of inorganic arsenic in food. Food Chem Toxicol 37:839–846

    Article  CAS  PubMed  Google Scholar 

  71. Shin H, Shin HS, Gary R et al (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  72. Singh HP, Kaurb S, Batish DR (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  CAS  PubMed  Google Scholar 

  73. Smith E, Kempsonb I, Juhasza AL et al (2009) Localization and speciation of arsenic and trace elements in rice tissues. Chemosphere 76:529–535

    Article  CAS  PubMed  Google Scholar 

  74. Sung DY, Kim TH, Komives EA et al. (2009) ARS5 is a component of the 26S proteasome complex and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J (in press). doi:10.1111/j.1365-313X.2009.03914.x

  75. Taylor GJ, Crowder AA (1983) Uprtake and accumulation of heavy metals by Typha latifolia L. in wetlands of Sudbury, Ontario region. Can J Bot 61:63–73

    Article  CAS  Google Scholar 

  76. Torres-Escribano S, Leal M, Vélez D et al (2008) Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments. Environ Sci Technol 42:3867–3872

    Article  CAS  PubMed  Google Scholar 

  77. Tripathi RD, Srivastava S, Mishra S et al (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  78. Tsuji JS, Yost LJ, Barraj LM et al (2007) Use of background inorganic arsenic exposures to provide perspective on risk assessment results. Reg Toxicol Pharmacol 48:59–68

    Article  CAS  Google Scholar 

  79. Wang TG, Peverly JH (1999) Iron oxidation states on root surfaces of a wetland plant (Phragmites australis). Soil Sci Soc Am J 63:247–252

    CAS  Article  Google Scholar 

  80. WHO (2001) Arsenic and arsenic compounds. Environmental health criteria, vol 224. World Health Organization, Geneva

    Google Scholar 

  81. Williams PN, Islam MR, Hussain SA et al. (2005a) Arsenic absorption by rice. In: Behavior of arsenic in aquifers, soils and plants (Conference Proceedings), Dhaka

  82. Williams PN, Price AH, Raab A et al (2005b) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    Article  CAS  PubMed  Google Scholar 

  83. Williams PN, Islam MR, Adomako EE et al (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol 40:4903–4908

    Article  CAS  PubMed  Google Scholar 

  84. Williams PN, Raab A, Feldmann J et al (2007a) Market basket survey shows elevated levels of as in South Central U.S. processed rice compared to California: consequences for human dietary exposure. Environ Sci Technol 41:2178–2183

    Article  CAS  PubMed  Google Scholar 

  85. Williams PN, Villada A, Deacon C et al (2007b) Greatly enhanced shoot arsenic assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    Article  CAS  PubMed  Google Scholar 

  86. Williams PN, Raab A, Feldmann J et al (2007c) High levels of arsenic in South Central US rice grain: consequences for human dietary exposure. Environ Sci Technol 152:746–749

    Google Scholar 

  87. Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  PubMed  Google Scholar 

  88. Xu XY, McGrath SP, Meharg AA et al (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  PubMed  Google Scholar 

  89. Ye ZH, Baker AJM, Wong MH et al (1998) Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat Bot 61:55–67

    Article  CAS  Google Scholar 

  90. Zavala YJ, Duxbury JM (2008) Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol 42:3856–3860

    Article  CAS  PubMed  Google Scholar 

  91. Zavala YJ, Gerads R, Gϋrleyϋk H et al (2008) Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environ Sci Technol 42:3861–3866

    Article  CAS  PubMed  Google Scholar 

  92. Zhang J, Zhu YG, Zeng DL et al (2007) Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytol 177:350–356

    PubMed  Google Scholar 

  93. Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154:169–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported with research grant from by Council of Scientific and Industrial Research, New Delhi and JC Bose fellowship to RT by the Department of Science and Technology, Govt. of India. Authors acknowledge NBPGR, New Delhi for providing seed material utilized in this study. Authors also acknowledge Rice Research Station, Chinsurah, and West Bengal for help in field trials.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rakesh Tuli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tuli, R., Chakrabarty, D., Trivedi, P.K. et al. Recent advances in arsenic accumulation and metabolism in rice. Mol Breeding 26, 307–323 (2010). https://doi.org/10.1007/s11032-010-9412-6

Download citation

Keywords

  • Arsenic
  • Quantitative trait loci
  • Microarray
  • miRNA
  • Rice
  • Stress
  • Transporters