Skip to main content
Log in

Introgression of the low-gossypol seed & high-gossypol plant trait in upland cotton: Analysis of [(Gossypium hirsutum × G. raimondii)² × G. sturtianum] trispecific hybrid and selected derivatives using mapped SSRs

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

In order to select genotypes of Gossypium hirsutum genetically balanced and expressing the low-gossypol seed & high-gossypol plant trait introgressed from the Australian wild diploid species G. sturtianum, the [(G. hirsutum × G. raimondii)² × G. sturtianum] triple hybrid was backcrossed to G. hirsutum and autopollinated to produce backcross and selfed progenies. Two hundred and six mapped SSR markers of G. hirsutum were used to monitor the introgression of SSR alleles specific to G. sturtianum and G. raimondii in the selected progenies. A high level of heterozygosity, varying from 25 to 100%, was observed for all G. sturtianum-specific SSR markers conserved in the most advanced progenies. These results indicate the existence of segregation distortion factors that are associated with the genes controlling the researched trait. This study represents a starting point to map the genes involved in the expression of the trait and better understand its genetic determinism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahoton L, Lacape JM, Dhont A et al. (2004) Isolation and characterization of seven alien monosomic addition lines of Gossypium australe F. Muell. on G. hirsutum L. In: Proceedings of the world cotton research conference-3, Cape Town, South Africa, 9–13 March 1998. Research Council-Institute for Industrial Crop. Pretoria, South Africa, pp 135–142

  • Alford BB, Liepa GU, Vanberber AD (1996) Cottonseed protein: what does the future hold? Plant Food Hum Nutr 49:1–11

    Article  CAS  Google Scholar 

  • Altman DW, Stelly DM, Kohel RJ (1987) Introgression of the glanded-plant and glandless-seed trait from Gossypium sturtianum Willis into cultivated upland cotton using ovule culture. Crop Sci 27:880–884

    Google Scholar 

  • Altman DW, Stipanovic RD, Bell AA (1990) Terpenoids in foliar pigment glands of A, D, and AD genome cottons: introgression potential for pest resistance. J Hered 81:447–454

    CAS  Google Scholar 

  • Becerra AL, Brubaker CL (2007) Frequency and fidelity of alien chromosome transmission in Gossypium hexaploid bridging populations. Genome 50:479–491

    Article  CAS  Google Scholar 

  • Benbouza H, Lognay G, Palm R et al (2002) Development of a visual method to quantify the gossypol content in cotton seeds. Crop Sci 42:1937–1942

    Google Scholar 

  • Benbouza H, Baudoin JP, Mergeai G (2006a) Improvement of genomic DNA extraction method with CTAB from cotton leaves. Biotechnol Agron Soc Environ 10:73–76

    CAS  Google Scholar 

  • Benbouza H, Jacquemin JM, Baudoin JP et al (2006b) Detection of cotton microsatellite usinga non-radioactive silver staining method. Biotechnol Agron soc Environ 10:77–81

    CAS  Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    PubMed  CAS  Google Scholar 

  • Birhman RK, Hosaka K (2000) Production of inbred progenies of diploid potatoes using an S-locus inhibitor (Sli) gene, and their characterization. Genome 43:495–502

    Article  PubMed  CAS  Google Scholar 

  • Brubaker CL, Benson CG, Miller C et al (1996) Occurence of terpenoid aldehydes and lysigenous cavities in the “glandless” seeds of Australian Gossypium species. Australien J Bot 44:601–612

    Article  CAS  Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1998) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    Article  Google Scholar 

  • Calhoun DS (1997) Inheritence of high glanding, an insect resistance trait in cotton. Crop Sci 37:1181–1186

    Article  Google Scholar 

  • Dilday RH (1986) Development of cotton plant with glandless seeds and glanded foliage and fruiting forms. Crop Sci 26:639–641

    Article  Google Scholar 

  • Endo TR (1979) Selective gametocidal action of a chromosome of Aegilops cylindria in a cultivar of common wheat. Weat Info Ser 50:24–28

    Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution of Gossypium. Adv Genet 23:271–375

    Article  Google Scholar 

  • Farrelly V, Rainey FA, Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801

    PubMed  CAS  Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:91–114

    Google Scholar 

  • Guo W, Cai C, Wang C et al (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541

    Article  PubMed  CAS  Google Scholar 

  • Heun M, Helentjaris T (1993) Inheritance of RAPDs in F1 hybrids of corn. Theor Appl Genet 85:961–968

    Article  CAS  Google Scholar 

  • Hospital F, Chevalet C, Mulsant P (1992) Using markers in genes introgression breeding programs. Genetics 132:1199–1210

    PubMed  CAS  Google Scholar 

  • Jiang C, Chee PW, Draye X et al (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution Int J org Evolution 54:798–814

    CAS  Google Scholar 

  • Lacape M, Nguyen T, Thibivilliers S et al (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on Gossypium barbadense backcross population. Genome 46:612–626

    Article  PubMed  CAS  Google Scholar 

  • Lee JA (1965) The genomic allocation of the principal foliar-gland loci in Gossypium hirsutum and Gossypium barbadense. Evolution Int J org Evolution 19:182–188

    Google Scholar 

  • Lee JA (1982) Linkage relationships between Le and Gl alleles in cotton. Crop Sci 22:1211–1213

    Article  Google Scholar 

  • Liu S, Saha S, Stelly D et al (2000) Chromosomal assignment of microsatellites loci in cotton. Am Genet Assoc 91:326–332

    CAS  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR et al (1999) Genome mapping in capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    PubMed  CAS  Google Scholar 

  • Lusas EW, Jividin GM (1987) Glandless cottonseed: a review of the first 25 years of processing and utilisation research. J Am Oil Chem Soc 64:839–854

    Article  CAS  Google Scholar 

  • Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590–605

    Article  Google Scholar 

  • Maan SS (1975) Exclusive preferential transmission of alien chromosome in wheat. Crop Sci 15:287–292

    Article  Google Scholar 

  • Maguire MP (1963) High transmission frequency of Tripsacum chromosome in corn. Genetics 48:1184–1194

    Google Scholar 

  • McCarty JC, Hedin PA, Stipanovic RD (1996) Cotton Gossypium spp. plant gossypol contents of selected Gl 2 and Gl 3 alleles. J Agron Food Chem 44:613–616

    Article  CAS  Google Scholar 

  • McCoy J, Echt CS (1993) Potential of trispecies bridge crosses and random amplified polymorphic DNA markers for introgression of Medicago daghestanica and M. pironae germplasm into alfalfa (M. sativa). Genome 36:594–601

    Article  PubMed  CAS  Google Scholar 

  • McMichael SC (1954) Glandless boll in Upland cotton and its use in the study of natural crossing. Agron J 46:527–528

    Google Scholar 

  • McMichael SC (1960) Combined effects of glandless genes gl 2 and gl 3 on pigment glands in the cotton plant. Agron J 52:385–386

    Google Scholar 

  • Mergeai G (1992) Nouvelles perspectives concernant la méthodologie à suivre pour l’introgression chez le cotonnier cultivé (Gossypium hirsutum L.) du caractère retard à la morphogénèse des glandes à gossypol. Coton Fibre Trop 47:113–116

    Google Scholar 

  • Mergeai G (2006) Introgressions interspécifiques chez le cotonnier. Cahiers Agric 15:135–143

    Google Scholar 

  • Mergeai G, Baudoin JP, Vroh Bi I (1997) Exploitation of trispecies hybrids to introgress the glandless seed and glanded plant trait of Gossypium sturtianum Willis into G. hirsutum L. Biotechnol Agron Soc Environ 1:272–277

    Google Scholar 

  • Mergeai G, Vroh Bi I, Baudoin JP et al (1998) Use of randomly amplified polymorphic DNA (RAPD) markers to assist wide hybridization in cotton. In: Bajaj YPS (ed) Cotton biotechnology. Springer Verlag, New York, pp 121–139

    Google Scholar 

  • Nasuda S, Friebe B, Gill BS (1998) Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics 149:115–1124

    Google Scholar 

  • Nguyen T, Giband M, Brottier P et al (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellites markers. Theor Appl Genet 109:167–175

    Article  PubMed  CAS  Google Scholar 

  • Pauly G (1979) Les glandes à pigments du cotonnier: aspects génétiques et sélection des variétés glandless et high gossypol. Coton Fibre Trop 34:379–402

    Google Scholar 

  • Percival EA, Wendel JF, Stewart JM (1999) Taxonomy and germplasm resources. In: Wayne SC, Cothren JT (eds) Cotton. Origin, history, technology, and production. Wiley, New York, pp 33–64

    Google Scholar 

  • Pons WA, Hoffpauir CL, Hopper TH (1953) Gossypol in cotton seed. Influence of variety of cotton seed and environment. Agric Food Chem 1:1115–1118

    Article  CAS  Google Scholar 

  • Rick CM (1966) Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53:85–96

    PubMed  CAS  Google Scholar 

  • Rieseberg L, Linder R, Seiler GJ (1995) Chromosomal and genic barriers to introgression in Helianthus. Genetics 141:1163–1171

    PubMed  CAS  Google Scholar 

  • Risterucci AM, Grivet L, N’Goran JAK et al (2000) A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955

    Article  CAS  Google Scholar 

  • Rong J, Abbey C, Bowers JE et al (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  PubMed  CAS  Google Scholar 

  • Rooney WL, Stelly DM (1989) Allelic composition of cotton at the Le 1 and Le 2 loci. Crop Sci 29:707–712

    Article  Google Scholar 

  • Rooney WL, Stelly DM (1991) Preferential transmission and somatic elimination of a Gossypium sturtianum chromosome in G. hirsutum. Crop Sci 82:151–155

    Google Scholar 

  • Rooney WL, Stelly DM, Altman DW (1991) Identification of four Gossypium sturtianum monosomic alien addition derivatives from a backcrossing program with G. hirsutum. Crop Sci 31:337–341

    Article  Google Scholar 

  • Samora PJ, Stelly DM, Kohel RJ (1994) Localisation and mapping of the Le 1 and gl 2 loci of cotton (Gossypium hirsutum). J of Hered 85:152–157

    CAS  Google Scholar 

  • Sandler L, Hiraizumi Y, Sandler I (1959) Meiotic drive in natural populations of Drosophila malanogaster. I. The cytogentic basis of segragation distorter. Genetics 44:233–250

    PubMed  CAS  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Gent 97:264–272

    Article  Google Scholar 

  • Stewart, JM (1995) Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable GA, Forrester NW (eds) Challenging the future. Proceedings of the world cotton research conference-1, Brisbane, Australia, 14–17 Feb 1994. CSIRO, Narrabri, NSW, Australia, pp 313–337

  • Stewart JM, HSU CL (1977) In-ovulo embryo culture and seedling development of cotton (Gossypium hirsutum L). Planta 137:113–117

    Article  CAS  Google Scholar 

  • Stipanovic RD, Bell AA, Mace ME et al (1975) Antimicrobial terpenoids of Gossypium: 6-méthoxygossypol and 6,6′-diméthoxygossypol. Phytochem 14:1077–1081

    Article  CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L et al (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Nat Acad Sci 103:18054–18059

    Article  PubMed  CAS  Google Scholar 

  • Turelli M, Orr HA (2000) Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154:1663–1679

    PubMed  CAS  Google Scholar 

  • Vroh Bi I, Baudoin JP, Mergeai G (1998) Cytogenetics of the ‘glandless-seed’ and ‘glanded-plant’ trait from Gossypium sturtianum Willis introgressed into upland (Gossypium hirsutum L.). Plant Breed 117:235–241

    Article  Google Scholar 

  • Vroh Bi I, Baudoin JP, Hau B et al (1999a) Development of high-gossypol cotton plants with low-gossypol seeds using trispecies bridge crosses and in vitro culture of seed embryos. Euphytica 106:243–251

    Article  Google Scholar 

  • Vroh Bi I, Maquet A, Baudoin JP et al (1999b) Breeding for “low gossypol seed and hugh gossypol plants” in upland cotton. Analysis of tri species hybrids and backcross progenies using AFLP and mapped RFLPs. Theor Appl Genet 99:1233–1244

    Article  Google Scholar 

  • Wang G, Wing RA, Paterson AH (1993) PCR amplification from single seeds, facilitating DNA marker-assisted breeding. Nucleic Acids Res 21:25–27

    CAS  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv in Agron 78:139–186

    Article  Google Scholar 

Download references

Acknowledgments

The Ph.D. scholarship of the first author was provided by the Belgian General Direction of International Cooperation for Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mergeai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benbouza, H., Lacape, J.M., Jacquemin, J.M. et al. Introgression of the low-gossypol seed & high-gossypol plant trait in upland cotton: Analysis of [(Gossypium hirsutum × G. raimondii)² × G. sturtianum] trispecific hybrid and selected derivatives using mapped SSRs. Mol Breeding 25, 273–286 (2010). https://doi.org/10.1007/s11032-009-9331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9331-6

Keywords

Navigation