Molecular Breeding

, Volume 23, Issue 2, pp 299–309 | Cite as

Parental genome composition and genetic classifications of derivatives from intergeneric crosses of Festuca mairei and Lolium perenne

  • Jianping P. Wang
  • Suleiman S. BughraraEmail author
  • Rouf M. A. Mian
  • Malay C. Saha
  • David A. Sleper


Intergeneric hybridization between Festuca and Lolium has been a long-term goal of forage and turfgrass breeders to generate improved cultivars by combining stress tolerance of Festuca and rapid establishment of Lolium. However, wide-distance hybridizations usually result in the wild genome being eliminated from the hybrid due to incomplete chromosome pairing and crossovers. In this study, random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were used to detect the parental genome composition of F1 hybrids and backcross, generated from crosses between Festuca mairei St. Yves (Fm) and Lolium perenne L. (Lp). Each of the hybrids exhibited integration of Fm and Lp genomes with varying levels of Fm/Lp genome ratios. However, cluster and principle component analyses of the progeny consistently revealed four groups depending on the amount of genome introgression from both parents. The parental genome composition and classifications of intergeneric progeny would be useful for breeding material selection.


Festuca mairei Lolium perenne Introgression Hybrids Random amplified polymorphic DNA (RAPD) Simple sequence repeats (SSR) 



Expressed sequence tag


Festuca arundinacea


Festuca mairei


First division restitution


Fluorescence in situ hybridization


Genomic in situ hybridization


Linkage groups


Lolium perenne


Random amplified polymorphic DNA


Sequential agglomerative hierarchical nested


Simple sequence repeats


Unweighted pair-group method with arithmetic mean

Supplementary material

11032_2008_9236_MOESM1_ESM.doc (78 kb)
(DOC 77 kb)
11032_2008_9236_MOESM2_ESM.doc (56 kb)
(DOC 55 kb)
11032_2008_9236_MOESM3_ESM.doc (64 kb)
(DOC 64 kb)
11032_2008_9236_MOESM4_ESM.pdf (883 kb)
(PDF 882 kb)
11032_2008_9236_MOESM5_ESM.docx (11 kb)
(DOC 10 kb)


  1. Bemabdelmouna A, Peltier D, Humbert C, Abirached-Darmency M (1999) Southern and fluorescent in situ hybridization detect three RAPD-generated PCR products useful as introgression markers in Petunia. Theor Appl Genet 98:10–17. doi: 10.1007/s001220051034 CrossRefGoogle Scholar
  2. Borill M, Tyler B, Lloyd-Jones M (1971) Studies in Festuca. 1. A chromosome atlas of bovinae and scariose. Cytologia (Tokyo) 36:1–14Google Scholar
  3. Buckner RC (1965) Fertility of annual ryegrass tall fescue amphiploid and their derivatives. Crop Sci 5:395–397Google Scholar
  4. Buckner RC, Burrus PB, Eizenga GC (1985) Genetic, morphological, and agronomic characteristics of LoliumFestuca amphiploids. Crop Sci 25:757–761Google Scholar
  5. Cao M, Sleper DA (2001) Use of genome-specific repetitive DNA sequences to monitor chromatin introgression from Festuca mairei into Lolium perenne. Theor Appl Genet 103:248–253. doi: 10.1007/s001220100564 CrossRefGoogle Scholar
  6. Cao M, Chen WP, Liu DJ (1994) Cytogenetics studies of intergeneric hybrid F1 and amphiploid between Lolium multiflorum Lam. and Festuca arundinacea var. glaucescens Boiss. Sci Agric Sinica 27(5):69–76Google Scholar
  7. Cao M, Sleper DA, Dong F, Jiang J (2000) Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between Lolium perenne and Festuca mairei. Genome 43:398–403. doi: 10.1139/gen-43-2-398 PubMedCrossRefGoogle Scholar
  8. Cao M, Bughrara SS, Sleper DA (2003) Cytogenetic analysis of Festuca species and amphiploids between Festuca mairei and Lolium perenne. Crop Sci 43:1659–1662Google Scholar
  9. Charmet G, Ravel C, Balfourier F (1997) Phylogenetic analysis in the Lolium–Festuca complex using molecular markers and ITS rDNA. Theor Appl Genet 94:1038–1046. doi: 10.1007/s001220050512 CrossRefGoogle Scholar
  10. Chen C (1996) Molecular genome characterization and introgression in Lolium perenne and Festuca species. Ph.D. Dissertation, University of Missouri–ColumbiaGoogle Scholar
  11. Chen C, Sleper DA (1999) FISH and RFLP marker-assisted introgression of Festuca mairei chromosome into Lolium perenne. Crop Sci 39:1676–1679Google Scholar
  12. Chen C, Sleper DA, West CP (1995) RFLP and cytogenetic analyses of hybrids between Festuca mairei and Lolium perenne. Crop Sci 35:720–725Google Scholar
  13. Chen C, Sleper DA, Chao S, Johal GS, West CP (1997) RFLP detection of 2n pollen formation by first and second division restitution in Perennial ryegrass. Crop Sci 37:76–80Google Scholar
  14. Dice LR (1945) Measurement of the amount of ecological association between species. Ecology 26:297–302. doi: 10.2307/1932409 CrossRefGoogle Scholar
  15. Gupta PK (2002) Triticeae EST–SSR Coordination. ITMI/2002/EST–SSR/. Accessed 09 June 2004
  16. Humphreys M, Thomas H, Harper J, Morgan G, James A, Ghamari A, Thomas H (1997) Dissecting drought- and cold-tolerance traits in the Lolium–Festuca complex by introgression mapping. New Phytol 137:55–60. doi: 10.1046/j.1469-8137.1997.00832.x CrossRefGoogle Scholar
  17. Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–597. doi: 10.1007/s00122-004-1879-2 PubMedCrossRefGoogle Scholar
  18. Jauhar PP (1993) Cytogenetics of the Festuca–Lolium complex: relevance to breeding. Springer, BerlinGoogle Scholar
  19. Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterization of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415. doi: 10.1007/s001220051661 CrossRefGoogle Scholar
  20. Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquière M, Doležel J (2006) Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor Appl Genet 113:731–742. doi: 10.1007/s00122-006-0341-z PubMedCrossRefGoogle Scholar
  21. Kubik C, Sawkins M, Meyer W, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne) cultivars based on SSR markers. Crop Sci 45:1565–1571Google Scholar
  22. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  23. Pašakinskiene I, Jones N (2005) A decade of ‘chromosome painting’ in Lolium and Festuca. Cytogenet Genome Res 109:393–399. doi: 10.1159/000082425 PubMedCrossRefGoogle Scholar
  24. Pavlicek A, Hrda S, Flegr J (1999) FreeTree—freeware program for construction of phylogenetic trees on the basis of distance data and for bootstrap/jackknife analysis of the trees robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol 45:97–99Google Scholar
  25. Prakash NS, Combes MC, Somanna N, Lashermes P (2002) AFLP analysis of introgression in coffee cultivars (Coffea arabica L.) derived from a natural interspecific hybrid. Euphytica 124:265–271. doi: 10.1023/A:1015736220358 CrossRefGoogle Scholar
  26. Randall DD, Nelson CJ, Sleper DA, Miles CD, Crane CF, Krueger RW, Wong JH, Poskuta JW (1985) Photosynthesis in allopolyploid Festuca. In: Ludden PW, Burris JE (eds) Nitrogen fixation and CO2 metabolism. Elsevier Publishing Company, New York, pp 409–418Google Scholar
  27. Riewe ME, Mondart CL (1985) The Ryegrasses. In: Heath ME, Barnes RF, Metcalfe DS (eds) Forages: the science of grassland agriculture, 4th edn. Iowa State Univ Press, Ames, pp 241–246Google Scholar
  28. Saha MC, Mian RA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST–SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791. doi: 10.1007/s00122-004-1681-1 PubMedCrossRefGoogle Scholar
  29. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726. doi: 10.1007/s001220051344 CrossRefGoogle Scholar
  30. Sharma H, Ohm H, Goulart L, Lister R, Appels R (1995) Introgression and characterization of barley yellow virus resistance from Thinopyrum intermedium into wheat. Genome 38:406–413. doi: 10.1139/g95-052 PubMedCrossRefGoogle Scholar
  31. Siffelova G, Pavelkoca M, Klabouchova A, Wiesner I, Nasinec V, Nasinec I (1997) RAPD fingerprinting of diploid Lolium perenne × hexaploid Festuca arundinacea hybrid genomes. Biol Plant 40:183–192. doi: 10.1023/A:1001056201052 CrossRefGoogle Scholar
  32. Wang JP, Bughrara SS (2008) Evaluation of drought tolerance for Atlas fescue, perennial ryegrass, and their progeny. Euphytica 164:113–122CrossRefGoogle Scholar
  33. Wang JP, Bughrara SS, Nelson CJ (2008) Morpho–physiological responses of several fescue grasses to drought stress. HortScience 43:776–783Google Scholar
  34. Warnke SE, Barker RE, Jung G, Sim SC, Mian MAR, Saha MC, Brilman LA, Dupal MP, Forster JW (2004) Genetic linkage mapping of an annual × perennial ryegrass population. Theor Appl Genet 109:294–304. doi: 10.1007/s00122-004-1647-3 PubMedCrossRefGoogle Scholar
  35. Zwierzykowski Z (2004) Amphiploid and introgression breeding within the Lolium–Festuca complex-achievements and perspectives. In: Yamada T, Takamizo T (eds) Development of a novel grass with environmental stress and high forage quality through intergeneric hybridization between Lolium and Festuca. NARO, Tsukuba, pp 17–29Google Scholar
  36. Zwierzykowski Z, Tayyar R, Brunell M, Lukaszewski AJ (1998) Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J Hered 89:324–328. doi: 10.1093/jhered/89.4.324 CrossRefGoogle Scholar
  37. Zwierzykowski Z, Kosmala A, Zwierzykowska E, Jones N, Jokm W, Bocianowski J (2006) Genome balance in six successive generations of the allotetraploid Festuca pratensis and Lolium perenne. Theor Appl Genet 113:539–547. doi: 10.1007/s00122-006-0322-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jianping P. Wang
    • 1
  • Suleiman S. Bughrara
    • 1
    Email author
  • Rouf M. A. Mian
    • 2
    • 3
  • Malay C. Saha
    • 2
  • David A. Sleper
    • 4
  1. 1.Department of Crop and Soil SciencesMichigan State UniversityEast LansingUSA
  2. 2.Forage Improvement DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  3. 3.USDA-ARSWoosterUSA
  4. 4.Division of Plant SciencesUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations