Skip to main content

The salt-tolerance gene rstB can be used as a selectable marker in plant genetic transformation

Abstract

The salt-tolerance gene rstB under the control of the cauliflower mosaic virus 35S promoter was used as a selectable marker gene in the Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum cv. Xanthi). The selective agent for plant regeneration was tolerance to 170 mM sodium chloride. The highest selection efficiency was 83.3%. No obvious differences in selection efficiencies were observed when those obtained using the standard selectable marker gene hpt and a selection regime of 10 mg l−1 hygromycin. Transgenic events were confirmed by PCR, Southern blot, RT-PCR and green fluorescent protein studies. The rstB transgenic plants showed improved salt tolerance and a normal phenotype. Based on these results, we suggest that the rstB gene may be used as a promising selectable marker and an alternative to the antibiotic- or herbicide-resistance genes in plant transformation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu JK, Gong Z (2005) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43:273–283. doi:10.1111/j.1365-313X.2005.02452.x

    PubMed  Article  CAS  Google Scholar 

  2. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469. doi:10.1104/pp.103.027979

    PubMed  Article  CAS  Google Scholar 

  3. Daley M, Knauf VC, Summerfelt KP, Turner JC (1998) Cotransformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker free transgenic plants. Plant Cell Rep 17:480–496. doi:10.1007/s002990050430

    Article  Google Scholar 

  4. Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without use of antibiotic selection. Curr Genet 39:109–116. doi:10.1007/s002940100185

    PubMed  Article  CAS  Google Scholar 

  5. De Vetten N, Wolters AM, Raemakers K, van der Meer I, Stege RT, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442. doi:10.1038/nbt801

    PubMed  Article  Google Scholar 

  6. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763. doi:10.1046/j.1365-313X.2003.01661.x

    PubMed  Article  CAS  Google Scholar 

  7. Ebinuma H, Sugita K, Matsunaga E et al (2000) Selection of marker-free transgenic plants using the oncogenes (IPT, ROLA, B, C) of Agrobacterium as selectable markers. In: Jarn SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer, Dordrecht, pp 24–26

    Google Scholar 

  8. Erikson O, Hertzberg M, Nǎsholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458. doi:10.1038/nbt946

    PubMed  Article  CAS  Google Scholar 

  9. FAO (Food and Agriculture Organization) (2005) Global network on integrated soil management for sustainable use of salt-effect soils. FAO Land and Plant Nutrition Management Service, Rome. Available at: http://www.fao. org/ag/ag/agll/spush

  10. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 396:307–319. doi:10.1093/jxb/erh003

    Article  Google Scholar 

  11. Gao YF, Zhu Z, Xiao GF, Zhu Y, Wu Q, Li XH (1989) Isolation of soybean kunitz trysin inhibitor gene and its application in plant insect-resistant genetic engineering. Acta Bot Sin 40:405–411

    Google Scholar 

  12. Ge SC, Liu YN, Yang SS (2001) Cloning of gene related to salt tolerance from Sinorhizobium fredii RT19 and its expression in Escherichia coli. Acta Genetica Sin 28:575–582

    CAS  Google Scholar 

  13. Hajdukiewicz PT, Gilbertson L, Stub JM (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J 2:161–170. doi:10.1046/j.1365-313x.2001.01067.x

    Article  Google Scholar 

  14. He Z, Fu Y, Si H, Hu G, Zhang S, Yu Y, Sun Z (2004) Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Sci 166:17–22. doi:10.1016/S0168-9452(03)00338-8

    Article  CAS  Google Scholar 

  15. Hohn B, Levy A, Puchta H (2001) Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 12(2):139–143. doi:10.1016/S0958-1669(00)00188-9

    PubMed  Article  CAS  Google Scholar 

  16. Horsch RB, Fry JE, Hoffmana NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into palnts. Science 227:1229–1231. doi:10.1126/science.227.4691.1229

    Article  CAS  Google Scholar 

  17. Joserbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117. doi:10.1023/A:1009633809610

    Article  Google Scholar 

  18. Klaus SMJ, Huang FC, Golds TJ, Koop HU (2004) Generation of marker-free plasmid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22(2):225–229. doi:10.1038/nbt933

    PubMed  Article  CAS  Google Scholar 

  19. Koning A (2003) A framework for designing transgenic crops—science, safety and citizen’s concerns. Nat Biotechnol 21:1274–1279. doi:10.1038/nbt1103-1274

    Article  Google Scholar 

  20. Kunkel T, Niu QW, Chan YS, Chua NH (1999) Inducible isopentenyl transferase as high efficiency marker for plant transformation. Nat Biotechnol 17:916–919. doi:10.1038/12914

    PubMed  Article  CAS  Google Scholar 

  21. Leyman B, Avonce N, Ramon M, Van Dijck P, Iturriaga G, Thevelein JM (2006) Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 121:309–317. doi:10.1016/j.jbiotec.2005.08.033

    PubMed  Article  CAS  Google Scholar 

  22. Liu HK, Yang C, Wei ZM (2005) Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci 168:997–1003. doi:10.1016/j.plantsci.2004.11.021

    Article  CAS  Google Scholar 

  23. Luo K, Zheng X, Chen Y, Xiao Y, Zhao D, Mc Avoy R, Pei Y, Li Y (2006) The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. Plant Cell Rep 25:403–409. doi:10.1007/s00299-005-0051-z

    PubMed  Article  CAS  Google Scholar 

  24. Mentewab A, Stewart JCN (2005) Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23:1177–1180. doi:10.1038/nbt1134

    PubMed  Article  CAS  Google Scholar 

  25. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232. doi:10.1016/j.jbiotec.2003.10.011

    PubMed  Article  CAS  Google Scholar 

  26. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.1111/j.1469-8137.2005.01487.x

    PubMed  Article  CAS  Google Scholar 

  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  28. Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci 5:273–274. doi:10.1016/S1360-1385(00)01684-8

    PubMed  Article  CAS  Google Scholar 

  29. Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9:1360–1385. doi:10.1016/j.tplants.2004.07.001

    Article  Google Scholar 

  30. Rommens CM (2006) Kanamycin resistance in plants: an unexpected trait controlled by a potentially multifaceted gene. Trends Plant Sci 11(7):317–319. doi:10.1016/j.tplants.2006.05.002

    PubMed  Article  CAS  Google Scholar 

  31. Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887. doi:10.1021/jf062477l

    PubMed  Article  CAS  Google Scholar 

  32. Sambrook J, Russell DW (2001) Molecular cloning, 3rd edn. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  33. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901. doi:10.1073/pnas.120170197

    PubMed  Article  CAS  Google Scholar 

  34. Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre/Lox site-specific recombination system. Transgenic Res 14:605–614. doi:10.1007/s11248-005-0884-9

    PubMed  Article  CAS  Google Scholar 

  35. Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD (2008) The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227(3):659–669. doi:10.1007/s00425-007-0648-2

    PubMed  Article  CAS  Google Scholar 

  36. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. doi:10.1016/S1369-5266(03)00085-2

    PubMed  Article  CAS  Google Scholar 

  37. Zhu Z, Wu R (2008) Regeneration of transgenic rice plants using high salt for selection without the need for antibiotics or herbicides. Plant Sci 174:519–523. doi:10.1016/j.plantsci.2008.01.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hi-Tech Program of China (J2002-B-00-03). The authors thank Dr. Mark D. Curtis from Switzerland, who provided the pMDC83 vector. We are grateful to colleagues for their comments and advice during the revision of this article and to Dr. Prof. Scott D. Russell for his critical reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figures (DOCX 2497 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, WJ., Yang, SS., Shen, XY. et al. The salt-tolerance gene rstB can be used as a selectable marker in plant genetic transformation. Mol Breeding 23, 269–277 (2009). https://doi.org/10.1007/s11032-008-9231-1

Download citation

Keywords

  • NaCl
  • Plant transformation
  • Salt tolerance
  • Selectable marker
  • Selection reagent