Skip to main content
Log in

Amino acid substitutions of the limit dextrinase gene in barley are associated with enzyme thermostability

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Limit dextrinase (LD) is a key enzyme in determining the malting quality. A survey of 60 barley varieties showed a wide range of variation for the enzyme activity and thermostability. Galleon showed low enzyme activity and high thermostability while Maud showed high activity and low thermostability. Alignment of the LD amino acid sequences of Galleon and Maud identified seven amino acid substitutions Lys/Arg-102, Thr/Ala-233, Ser/Gly-235, Gly/Ala-298, Cys/Arg-415, Ala/Ser-885 and Gly/Cys-888. Genetic diversity of LD was investigated using single strand conformation polymorphism based on the amino acid substitutions. Only limited genetic variation was detected in the current malting barley varieties, although wide variation was observed in the wider barley germplasm. The Thr/Ala-233 and Ala/Ser-885 substitutions were associated with enzyme thermostability (P < 0.0001), but no polymorphism was associated with the enzyme activity. This result was confirmed from further sequence analysis. The results will provide a tool for understanding and selection of high LD thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arends AM, Fox GP, Henry RJ, Marschke RJ, Symons MH (1995) Genetic and environmental variation in the diastatic power of Australian barley. J Cereal Sci 21:63–70. doi:10.1016/S0733-5210(95)80009-3

    Article  CAS  Google Scholar 

  • Bamforth CW (2003) Barley and malt starch in brewing: a general review. Tech Q Master Brew Assoc Am 40:89–97

    CAS  Google Scholar 

  • Bertoft B, Andtfolk C, Kulp SE (1984) Effect of pH, temperature, and calcium ions on barley malt α-amylase isoenzymes. J Inst Brew 90:298–302

    CAS  Google Scholar 

  • Burton RA, Zhang XQ, Hrmova M, Fincher GB (1999) A single limit dextrinase gene is expressed both in the developing endosperm and in germinated grains of barley. Plant Physiol 119:859–887. doi:10.1104/119.3.859

    Article  PubMed  CAS  Google Scholar 

  • Delcour JA, Verschaeve SG (1987) Malt diastatic activity. Part 2. A modified EBC diastatic power assay for the selective estimation of β-amylase activity. Time and temperature dependence of the release of reducing sugars. J Inst Brew 93:296–301

    CAS  Google Scholar 

  • Eglinton JK, Langridge P, Evans DE (1998) Thermostability variation in alleles of barley beta-amylase. J Cereal Sci 28:301–309. doi:10.1016/S0733-5210(98)90010-8

    Article  CAS  Google Scholar 

  • Erkkila MJ, Leah R, Ahokas H, Cameron-Mills V (1998) Allele dependant barley grain β-amylase activity. Plant Physiol 117:679–685. doi:10.1104/117.2.679

    Article  PubMed  CAS  Google Scholar 

  • Evans DE, Wallace W, Lance RCM, MacLeod LC (1997) Measurement of beta-amylase in malting barley (Hordeum vulgare L.). Part 2: the effect of germination and kilning on beta-amylase. J Cereal Sci 26:241–250. doi:10.1006/jcrs.1997.0120

    Article  CAS  Google Scholar 

  • Evans DE, van Wegen B, Ma Y, Eglinton JK (2003) The impact of the thermostability of α-amylase, β-amylase and limit dextrinase on potential wort fermentability. J Am Soc Brew Chem 61:210–218

    CAS  Google Scholar 

  • Evans E, Collins H, Wilhelmson (2005) Assessing the impact of the level of diastatic power enzymes and their thermostability on the hydrolysis of starch during wort production to predict malt fermentability. J Am Soc Brew Chem 63:185–198

    CAS  Google Scholar 

  • Evans DE, Li C, Eglinton JK (2007) A superior prediction of malt attenuation. Proc Congr Eur Brew Conv 31

  • Fox G, Panozzo JF, Li CD, Lance RCM, Inkerman A, Henry RJ (2003) Molecular basis of barley quality. Aust J Agric Res 54:1081–1101

    Article  CAS  Google Scholar 

  • Gunkel J, Voetz M, Rath F (2002) Effect of the malting barley variety (Hordeum vulgare L.) on fermentability. J Inst Brew 108:355–361

    CAS  Google Scholar 

  • Khursheed B, Rogers JC (1988) Barley α-amylase genes. J Biol Chem 263:18953–18960

    PubMed  CAS  Google Scholar 

  • Kihara M, Kaneko T, Ito K (1998) Genetic variation of beta-amylase thermostability among varieties of barley, Hordeum vulgare L., and relation to malting quality. Plant Breed 117:425–428. doi:10.1111/j.1439-0523.1998.tb01967.x

    Article  CAS  Google Scholar 

  • Kihara M, Kaneko T, Ito K, Aida Y, Takeda K (1999) Geographical variation of β-amylase thermostability among varieties of barley (Hordeum vulgare) and β-amylase deficiency. Plant Breed 118:453–455. doi:10.1046/j.1439-0523.1999.00397.x

    Article  CAS  Google Scholar 

  • Kristensen M, Lok F, Planchot V, Svendsen I, Leah R, Svensson B (1999) Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley. Biochim Biophys Acta 1431:538–546

    PubMed  CAS  Google Scholar 

  • Kunze W (1996) Wort production. In: Wainwright T (ed) Technology brewing and malting. VLB, Berlin, pp 171–316

  • Lee WJ, Pyler RE (1984) Barley malt limit dextrinase: varietal, environmental and malting effects. J Am Brew Chem 42:11–17

    CAS  Google Scholar 

  • Li CD (1998) Genetic control of hydrolytic enzymes in germinated barley (Hordeum vulgare). PhD Thesis, University of Adelaide

  • Li CD, Zhang XQ, Eckstein P, Rossnagel BR, Scoles GJ (1999) A polymorphic microsatellite in the limit dextrinase gene of barley (Hordeum vulgare). Mol Breed 5:569–577. doi:10.1023/A:1009692207966

    Article  CAS  Google Scholar 

  • Li CD, Langridge P, Zhang XQ, Eckstein PE, Rossnagel BG, Lance RCM et al (2001) Mapping of alleles of beta-amylase in barley (Horduem vulgare L.) in which an amino acid substitution determines both beta-amylase isoenzyme type and the level of free beta-amylase. J Cereal Sci 35:39–50. doi:10.1006/jcrs.2001.0398

    Article  CAS  Google Scholar 

  • Ma YF, Eglinton JK, Evans DE, Logue SJ, Langridge P (2000) Removal of the four C-terminal glycine rich repeats enhances the thermostability of barley β-amylase. Biochemistry 39:13350–13355. doi:10.1021/bi000688s

    Article  PubMed  CAS  Google Scholar 

  • Ma YF, Langridge P, Logue SJ, Evans DE (2001) The amino acid substitutions of barley β-amylase allellic forms that improve thermostability and substrate-binding affinity. Mol Gen Genet 266:345–352

    CAS  Google Scholar 

  • Ma YF, Langridge P, Logue SJ, Evans DE (2002) A single amino acid substitution that determines the IEF band pattern of bar-ley β-amylase. J Cereal Sci 35:79–85. doi:10.1006/jcrs.2001.0421

    Article  CAS  Google Scholar 

  • MacGregor AW, Daussant J (1981) Isoelectric-focusing and immuno-chemical analysis of germinated barley α-amylases after freeze-drying and kilning. J Inst Brew 87:155–157

    CAS  Google Scholar 

  • MacGregor AW, Bazin SL, Macri LJ, Babb JC (1999) Modeling the contribution of alpha-amylase, beta-amylase and limit dextrinase to starch degradation during mashing. J Cereal Sci 29:161–169. doi:10.1006/jcrs.1998.0233

    Article  CAS  Google Scholar 

  • Martins-lopes P, Zhang H, Koebner R (2001) Detection of single nucleotide mutations in wheat using single strand conformation polymorphism gels. Plant Mol Biol Rep 19:159–162. doi:10.1007/BF02772158

    Article  CAS  Google Scholar 

  • Muslin EH, Karpelenia CB, Henson CA (2003) The impact of thermostable α-glucosidase on the production of fermentable sugars during mashing. J Am Soc Brew Chem 61:142–145

    CAS  Google Scholar 

  • Rogowsky PM, Gtuidet FLY, Langridge P, Shepherd KW, Koebner RMD (1991) Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor Appl Genet 82:537–544. doi:10.1007/BF00226788

    Article  CAS  Google Scholar 

  • Savov A, Angelicheva D, Jordanova A, Eigel A, Kalaydjieva L (1992) High percentage acrylamide gels improve resolution in SSCP analysis. Nucleic Acids Res 20:6741–6742. doi:10.1093/nar/20.24.6741

    Article  PubMed  CAS  Google Scholar 

  • Sissons MJ, Lance RCM, Sparrow DHB (1992) Studies on limit dextrinase in barley I. Purification of malt limit dextrinase and production of monospecific antibodies. J Cereal Sci 16:107–116

    Article  CAS  Google Scholar 

  • Sissons MJ, Taylor M, Proudlove M (1995) Barley malt limit dextrinase: its extraction, heat stability, and activity during malting and mashing. J Am Soc Brew Chem 53:104–110

    CAS  Google Scholar 

  • Sjöholm K, Macri LJ, MacGregor AW (1995) Is there a role for limit dextrinase in mashing? Proc Congr Eur Brew Conv 25:277–284

    Google Scholar 

  • Slack PT, Wainwright T (1980) Amylolysis of large starch granules form barleys in relation to their gelatinization temperatures. J Inst Brew 86:74–77

    CAS  Google Scholar 

  • Stenholm K, Home S (1999) A new approach to limit dextrinase and its role in mashing. J Inst Brew 105:205–210

    CAS  Google Scholar 

  • Stenholm K, Home S, Pietila K, Macri LJ, MacGregor AW (1996) Starch hydrolysis in mashing. Proc Inst Brew Conv Asia Pac Sect 24:142–145

    Google Scholar 

  • Walker JW, Bringhurst TA, Broadhead AL, Brosnan JM, Pearson SY (2001) The survival of limit dextrinase during fermentation in the production of scotch whiskey. J Inst Brew 107:99–106

    CAS  Google Scholar 

  • Wang XD, Yang J, Zhang GP (2006) Genotypic and environmental variation in barley limit dextrinase activity and its relation to malt quality. J Zhejiang Univ Sci B 7:386–392. doi:10.1631/jzus.2006.B0386

    Article  PubMed  CAS  Google Scholar 

  • Zietkiewicz E, Yotova V, Jarnik M, Korab-Laskowska M, Kidd KK, Modiano D et al (1997) Nuclear DNA diversity in worldwide distributed human populations. Gene 205:161–171. doi:10.1016/S0378-1119(97)00408-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Australian Grain Research & Development Corporation project UT00012 and Australia-China Collaborative Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengdao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Westcott, S., Gong, X. et al. Amino acid substitutions of the limit dextrinase gene in barley are associated with enzyme thermostability. Mol Breeding 23, 61–74 (2009). https://doi.org/10.1007/s11032-008-9214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9214-2

Keywords

Navigation