Molecular Breeding

, Volume 23, Issue 1, pp 23–33 | Cite as

Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars

  • Shiaoman Chao
  • Wenjun Zhang
  • Eduard Akhunov
  • Jamie Sherman
  • Yaqin Ma
  • Ming-Cheng Luo
  • Jorge Dubcovsky


In this study, we developed 359 detection primers for single nucleotide polymorphisms (SNPs) previously discovered within intron sequences of wheat genes and used them to evaluate SNP polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.18 among 20 US elite wheat cultivars, representing seven market classes. This value increased to 0.23 when SNPs were pre-selected for polymorphisms among a diverse set of 13 hexaploid wheat accessions (excluding synthetic wheats) used in the wheat SNP discovery project ( PIC values for SNP markers in the D genome were approximately half of those for the A and B genomes. D genome SNPs also showed a larger PIC reduction relative to the other genomes (P < 0.05) when US cultivars were compared with the more diverse set of 13 wheat accessions. Within those accessions, D genome SNPs show a higher proportion of alleles with low minor allele frequencies (<0.125) than found in the other two genomes. These data suggest that the reduction of PIC values in the D genome was caused by differential loss of low frequency alleles during the population size bottleneck that accompanied the development of modern commercial cultivars. Additional SNP discovery efforts targeted to the D genome in elite wheat germplasm will likely be required to offset the lower diversity of this genome. With increasing SNP discovery projects and the development of high-throughput SNP assay technologies, it is anticipated that SNP markers will play an increasingly important role in wheat genetics and breeding applications.





Expressed sequence tag


Fluorescence polarization


Hard red spring


Hard white spring


Hard red winter


Hard White Winter


Polymorphism information content


Simple sequence repeat


Single nucleotide polymorphism


Soft red winter


Soft white spring


Soft white winter

Supplementary material

11032_2008_9210_MOESM1_ESM.doc (512 kb)
(DOC 511 kb)


  1. Batley J, Barker G, O’Sullivan J, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertion/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91. doi:10.1104/pp.102.019422 PubMedCrossRefGoogle Scholar
  2. Blake NK, Sherman JD, Dvorak J, Talbert LE (2004) Genome-specific primer sets for starch biosynthesis genes in wheat. Theor Appl Genet 109:1295–1302. doi:10.1007/s00122-004-1743-4 PubMedCrossRefGoogle Scholar
  3. Brookes A (1999) The essence of SNPs. Gene 234:177–186. doi:10.1016/S0378-1119(99)00219-X PubMedCrossRefGoogle Scholar
  4. Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256. doi:10.1016/S0169-5347(03)00018-1 CrossRefGoogle Scholar
  5. Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P et al (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947. doi:10.1534/genetics.103.016303 PubMedCrossRefGoogle Scholar
  6. Cardon LR, Abecasis GR (2003) Using haplotype blocks to map human complex trait loci. Trends Genet 19:135–140. doi:10.1016/S0168-9525(03)00022-2 PubMedCrossRefGoogle Scholar
  7. Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030. doi:10.2135/cropsci2006.06.0434 CrossRefGoogle Scholar
  8. Chen X, Levine L, Kwok P-Y (1999) Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 9:492–498PubMedGoogle Scholar
  9. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S et al (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19. doi:10.1186/1471-2156-3-19 PubMedCrossRefGoogle Scholar
  10. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E et al (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207. doi:10.1038/13833 PubMedCrossRefGoogle Scholar
  11. Choi I-Y, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV et al (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696. doi:10.1534/genetics.107.070821 PubMedCrossRefGoogle Scholar
  12. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866. doi:10.1126/science.1143986 PubMedCrossRefGoogle Scholar
  13. Dvorak J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the aegilops-triticum alliance. Genetics 171:323–332. doi:10.1534/genetics.105.041632 PubMedCrossRefGoogle Scholar
  14. Dvorak J, Luo MC, Yang ZL (1998) Genetic evidence on the origin of Triticum aestivum L. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. ICARDA, Aleppo, Syria, pp 235–251Google Scholar
  15. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies Indica and Japonica genome alignments. Genome Res 14:1812–1819. doi:10.1101/gr.2479404 PubMedCrossRefGoogle Scholar
  16. Hayes P, Szucs P (2006) Disequilibrium and association in barley: Thinking outside the glass. Proc Natl Acad Sci USA 103:18385–18386. doi:10.1073/pnas.0609405103 PubMedCrossRefGoogle Scholar
  17. Kruglyak L (1997) The use of a genetic map of biallelic markers in linkage studies. Nat Genet 17:21–24. doi:10.1038/ng0997-21 PubMedCrossRefGoogle Scholar
  18. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282 PubMedCrossRefGoogle Scholar
  19. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  20. Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N et al (2002) Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171. doi:10.1093/dnares/9.5.163 PubMedCrossRefGoogle Scholar
  21. Rafalski A (2002) Applications of single nucleotide polymorphism in crop genetics. Curr Opin Plant Biol 5:94–100. doi:10.1016/S1369-5266(02)00240-6 PubMedCrossRefGoogle Scholar
  22. Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D et al (2006) Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131–1139. doi:10.1139/G06-067 PubMedCrossRefGoogle Scholar
  23. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A et al (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527. doi:10.1007/s00438-005-0046-z PubMedCrossRefGoogle Scholar
  24. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661. doi:10.1073/pnas.0606133103 PubMedCrossRefGoogle Scholar
  25. Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G et al (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398PubMedCrossRefGoogle Scholar
  26. Schneider K, Kulosa D, Soerensen TR, Möhring S, Heine M, Durstewitz G, Polley A, Weber E, Jamsari, Lein J, Hohmann U, Tahiro E, Weisshaar B, Schulz B, Koch G, Jung C, Ganal M (2007) Analysis of DNA polymorphisms in sugar beet (Beta vulgaris L.) and development of an SNP-based map of expressed genes. Theor Appl Genet doi: 10.1007/s00122-007-0591-4
  27. Sears ER (1954) The aneuploids of common wheat. Mo Agric Exp Stn Res Bull 572:1–59Google Scholar
  28. Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 49:431–437. doi:10.1139/g03-027 CrossRefGoogle Scholar
  29. Talbert LE, Smith LY, Blake NK (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41:402–407. doi:10.1139/gen-41-3-402 CrossRefGoogle Scholar
  30. Thuillet AC, Bru D, David J, Roumet P, Santoni S, Sourdille P et al (2002) Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp. durum desf. Mol Biol Evol 19:122–125PubMedGoogle Scholar
  31. Vroh Bi I, McMullen MD, Sanchez-Villeda H, Schroeder S, Gardiner J, Polacco M et al (2006) Single nucleotide polymorphism and insertion-deletion for genetic markers and anchoring the maize fingerprint contig physical map. Crop Sci 46:12–21. doi:10.2135/cropsci2004.0706 CrossRefGoogle Scholar
  32. Weir BS (1996) Genetic data analysis II. Sinauer Associate, Inc., SunderlandsGoogle Scholar
  33. Zhu YL, Song QJ, Hyten DL, van Tassell CP, Matukumalli LK, Grimm DR et al (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Shiaoman Chao
    • 1
  • Wenjun Zhang
    • 2
  • Eduard Akhunov
    • 3
  • Jamie Sherman
    • 4
  • Yaqin Ma
    • 2
  • Ming-Cheng Luo
    • 2
  • Jorge Dubcovsky
    • 2
  1. 1.USDA-ARS Biosciences Research LabFargoUSA
  2. 2.Department of Plant SciencesUniversity of California, DavisDavisUSA
  3. 3.Department of Plant PathologyKansas State UniversityManhattanUSA
  4. 4.Department of Plant and Soil SciencesMontana State UniversityBozemanUSA

Personalised recommendations