Molecular Breeding

, Volume 23, Issue 1, pp 13–22 | Cite as

Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs

  • Bo Wei
  • Ruilian JingEmail author
  • Chengshe Wang
  • Jibao Chen
  • Xinguo Mao
  • Xiaoping Chang
  • Jizeng Jia


The Dreb genes are involved in abiotic stress tolerances, such as drought, salinity, low temperature and ABA. The purpose of the present research was to establish protocols for the development of genome-specific and allele specific markers in common wheat (Triticum aestivum L.) using the Dreb1 genes as an example. Based on the available sequences of Dreb1 genes in common wheat and related species, five primer pairs were designed using Primer Premier 5.0. Two primers, P25F/PR and P21F/P21R, amplified 596- and 1113-bp fragments, respectively, from the A genome, P18F/P18R amplified a 717-bp fragment from the B genome, and primers P22F/PR and P20F/P20R amplified 596- and 1193-bp fragments, respectively, from the D genome. Using these genome-specific primers and the Chinese Spring using nulli-tetrasomic lines, the Dreb1 genes were located on chromosomes 3A, 3B and 3D. Two SNPs (S646 and S770) in Dreb-B1 distinguished the Opata 85 and W7984 parents of the ITMI mapping population, but there was no polymorphism between the orthologous Dreb-A1 and Dreb-D1 sequences. By assaying the genotypes of 115 RILs with the allele-specific primer P40 based on SNP S770, Dreb-B1 was mapped between markers Xmwg818 and Xfbb117 on chromosome 3BL. This genetic mapping of Dreb-B1 on chromosome 3B may be helpful in wheat breeding programs aimed at improving drought tolerance.


Wheat Functional marker Single nucleotide polymorphisms Dreb Dehydration-responsive element binding proteins 



We thank Prof. Hans J. Bohnert (Department of Plant Biology, University of Illinois, USA) and Robert A. McIntosh (Plant Breeding Institute, University of Sydney, Australia) for kindly advice and help in revising the manuscript. This work was funded by the National Basic Research Program of China (973 Program) (2004CB117205) and the National High-tech R&D Program (863 Program) (2006AA100201).


  1. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560. doi: 10.1016/j.tplants.2003.09.010 PubMedCrossRefGoogle Scholar
  2. Bagge M, Xia X, Lübberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216. doi: 10.1016/j.pbi.2007.01.009 PubMedCrossRefGoogle Scholar
  3. Blake NK, Sherman JD, Dvořák JL, Talbert LE (2004) Genome-specific primer sets for starch biosynthesis genes in wheat. Theor Appl Genet 109:1295–1302. doi: 10.1007/s00122-004-1743-4 PubMedCrossRefGoogle Scholar
  4. Brookes AJ (1999) The essence of SNPs. Gene 234:177–186. doi: 10.1016/S0378-1119(99)00219-X PubMedCrossRefGoogle Scholar
  5. Brunner S, Keller B, Feuillet C (2000) Molecular mapping of the Rph7.g leaf rust resistance gene in barley (Hordeum vulgare L.). Theor Appl Genet 101:783–788. doi: 10.1007/s001220051544 CrossRefGoogle Scholar
  6. Chen JQ, Dong Y, Wang YJ, Liu Q, Zhang JS, Chen SY (2003) An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theor Appl Genet 107:972–979. doi: 10.1007/s00122-003-1346-5 PubMedCrossRefGoogle Scholar
  7. Chen JB, Jing RL, Yuan HY, Wei B, Chang XP (2005) Single nucleotide polymorphism of TaDREB1 gene in wheat germplasm. Sci Agric Sin 38:2387–2394Google Scholar
  8. Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M et al (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492. doi: 10.1104/pp.124.4.1483 PubMedCrossRefGoogle Scholar
  9. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763. doi: 10.1046/j.1365-313X.2003.01661.x PubMedCrossRefGoogle Scholar
  10. He XY, He ZH, Zhang LP, Sun DJ, Morris CF, Fuerst EP et al (2007) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115:47–58. doi: 10.1007/s00122-007-0539-8 PubMedCrossRefGoogle Scholar
  11. Holloway JW, Beghé B, Turner S, Hinks LJ, Day IN, Howell WM (1999) Comparison of three methods for single nucleotide polymorphism typing for DNA bank studies: sequence-specific oligonucleotide probe hybridisation, TaqMan liquid phase hybridisation, and microplate array diagonal gel electrophoresis (MADGE). Hum Mutat 14:340–347. doi :10.1002/(SICI)1098-1004(199910)14:4<340::AID-HUMU10>3.0.CO;2-ZPubMedCrossRefGoogle Scholar
  12. Jeong SC, Maroof MA (2004) Detection and genotyping of SNPs tightly linked to two disease resistance loci, Rsv1 and Rsv3, of soybean. Plant Breed 123:305–310. doi: 10.1111/j.1439-0523.2004.00981.x CrossRefGoogle Scholar
  13. Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C et al (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18:999–1005. doi: 10.1093/nar/18.4.999 PubMedCrossRefGoogle Scholar
  14. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 21:185–199Google Scholar
  15. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedCrossRefGoogle Scholar
  16. Mochida K, Yamazaki Y, Ogihara Y (2003) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 270:371–377. doi: 10.1007/s00438-003-0939-7 PubMedCrossRefGoogle Scholar
  17. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N et al (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17:2503–2516. doi: 10.1093/nar/17.7.2503 PubMedCrossRefGoogle Scholar
  18. Qin F, Li J, Zhang GY, Zhao J, Chen SY, Liu Q (2003) Isolation and structural analysis of DRE-binding transcription factor from Maize (Zea mays L.). Acta Bot Sin 45:331–339Google Scholar
  19. Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of β-amylase sequence in wheat and its relatives. Theor Appl Genet 75:289–290. doi: 10.1007/BF00303966 CrossRefGoogle Scholar
  20. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003a) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930PubMedGoogle Scholar
  21. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q et al (2003b) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161PubMedGoogle Scholar
  22. Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46:431–437. doi: 10.1139/g03-027 PubMedCrossRefGoogle Scholar
  23. Tian XH, Li XP, Zhou HL, Zhang JS, Gong ZZ, Chen SY (2005) OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element. Acta Bot Sin 47:467–476Google Scholar
  24. Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114:165–175. doi: 10.1007/s00122-006-0420-1 PubMedCrossRefGoogle Scholar
  25. Wei B, Jing RL, Wang CS, Chang XP (2006) Assaying single nucleotide polymorphism in wheat (Triticum aestivum L.) with allele-specific PCR. Sci Agric Sin 39:1313–1320Google Scholar
  26. Wu DY, Ugozzoli L, Pal BK, Wallace RB (1989) Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci USA 86:2757–2760. doi: 10.1073/pnas.86.8.2757 PubMedCrossRefGoogle Scholar
  27. Zhao XL, Ma W, Gale KR, Lei ZS, He ZH, Sun QX et al (2007) Identification of SNPs and development of functional markers for LMW-GS genes at Glu-D3 and Glu-B3 loci in bread wheat (Triticum aestivum L.). Mol Breed 20:223–231. doi: 10.1007/s11032-007-9085-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Bo Wei
    • 1
    • 2
  • Ruilian Jing
    • 1
    Email author
  • Chengshe Wang
    • 3
  • Jibao Chen
    • 1
  • Xinguo Mao
    • 1
  • Xiaoping Chang
    • 1
  • Jizeng Jia
    • 1
  1. 1.The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm & Biotechnology, Ministry of Agriculture, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingPeople’s Republic of China
  3. 3.College of AgricultureNorthwest A&F UniversityXianyangPeople’s Republic of China

Personalised recommendations