Advertisement

Molecular Breeding

, Volume 21, Issue 4, pp 439–454 | Cite as

Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum

  • S. Fondevilla
  • Z. Satovic
  • D. Rubiales
  • M. T. Moreno
  • A. M. Torres
Article

Abstract

Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.

Keywords

Ascochyta blight Pea QTL Resistance 

References

  1. Avila CM, Sillero JC, Rubiales D, Moreno MT, Torres AM (2003) Identification of RAPD markers linked to Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor Appl Genet 107(2):353–358PubMedCrossRefGoogle Scholar
  2. Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean. Theor Appl Genet 108:1071–1078PubMedCrossRefGoogle Scholar
  3. Blixt S (1974) The pea. In: King RC (ed) Handbook of genetics. Plenium Press, New York, pp 181–221Google Scholar
  4. Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun J, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe B, Bisseling T, Kiss GB, Cook DR (2004a) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with Medicago sativa. Genetics 166:1463–1502PubMedCrossRefGoogle Scholar
  5. Choi HK, Kim DJ, Zhu H, Mun JH, Baek JM, Roe B, Ellis N, Young ND, Doyle J, Kiss G, Cook DR (2004b) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294PubMedCrossRefGoogle Scholar
  6. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 198:963–971Google Scholar
  7. Clulow SA, Lewis BG, Matthews P (1991a) A pathotype clasification for Mycosphaerella pinodes. Phytopathology 131:322–332Google Scholar
  8. Clulow SA, Matthews P, Lewis BG (1991b) Genetical analysis of resistance to Mycosphaerella pinodes in pea seedling. Euphytica 58:183–189CrossRefGoogle Scholar
  9. Cobos MJ, Fernández MJ, Rubio J, Kharrat M, Moreno MT, Gil J, Millán T (2005) A linkage map of chickpea (Cicer arietinum L) based on populations from Kabuli × Desi crosses: location of a resistance gene for fusarium wilt race 0. Theor Appl Genet 110:1347–1353PubMedCrossRefGoogle Scholar
  10. Dirlewanger E, Isaac P, Ranade S, Belajouza M, Cousin R, Devienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27CrossRefGoogle Scholar
  11. Fondevilla S (2000) Identification and characterization of new sources of resistance to M. pinodes in pea. MSc thesis, University of Cordoba, CordobaGoogle Scholar
  12. Fondevilla S, Ávila CM, Cubero JI, Rubiales D (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed 124:313–315CrossRefGoogle Scholar
  13. Fondevilla S, Cubero JI, Rubiales D (2007) Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. Eur J Plant Pathol 119:53–58CrossRefGoogle Scholar
  14. Gilpin BJ, McCallum JA, Timmerman-Vaughan GM (1997) A linkage map of the pea (Pisum sativum) genome containing cloned sequences of known function and expresses sequences tags (ESTs). Theor Appl Genet 95:1289–1299CrossRefGoogle Scholar
  15. Hall KJ, Parker JS, Ellis THN, Turner L, Knox MR, Hofer JMI, Lu J, Ferrandiz C, Hunter PJ, Taylor JD, Baird K (1997) The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage-mapping populations. Genome 40:755–769PubMedGoogle Scholar
  16. Kalo P, Seves A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis THN, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272:235–246PubMedCrossRefGoogle Scholar
  17. Kraft JM (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Dis 82:251–253CrossRefGoogle Scholar
  18. Kosambi DD (1994) The estimation of map distance from recombination values. Ann Eugen 12:172–175Google Scholar
  19. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative trait using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  20. Lander ES, Green P, Abramson J, Barlow A, Dali MJ, Lincoln DE, Newburg L (1987) MAPMAKER: an interactive computer program for constructing genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  21. Lawyer SA (1984) Diseases caused by Ascochyta spp. In: Hargedon DJ (ed) Compendium of pea diseases. The American Phytopathological Society/APS Press, St. Paul, pp 11–15Google Scholar
  22. Macas J, Doležel J, Lucretti S, Pich U, Meister A, Fuchs J, Schubert I (1993) Location of seed protein genes on flow-sorted field bean chromosomes. Chromosome Res 1:107–115PubMedCrossRefGoogle Scholar
  23. McPhee K (2003) Dry pea production and breeding—a mini—review. J Food Agr Environ 1:64–69Google Scholar
  24. Millán T, Rubio J, Iruela M, Daly K, Cubero JI, Gil J (2003) Markers associated with Ascochyta blight resistance in chickpea an their potential in marker-assisted selection. Field Crops Res 84:373–384CrossRefGoogle Scholar
  25. Moussart A, Tivoli B, Lemarchand E, Deneufbourg F, Roi S, Sicard G (1998) Role of seed infection by the Aschochyta blight pathogen of dried pea (Mycosphaerella pinodes) in seedling emergence, early disease development and transmission of the disease to aerial plant parts. Eur J Plant Pathol 104:93–102CrossRefGoogle Scholar
  26. Nilsson NO, Sll T, Bengston BO (1993) Chiasma and recombination data in plants: are they compatible? Trends Genet 9:344–348PubMedCrossRefGoogle Scholar
  27. Onfroy C, Tivoli B, Corbière R, y Bouznad Z (1999) Cultural, molecular and pathogenic variability of Mycosphaerella pinodes and Phoma medicaginis var pinodella isolates from dried pea (Pisum sativum) in France. Plant Pathol 48:218–229CrossRefGoogle Scholar
  28. Palomino C, Satovic Z, Cubero JI, Torres AM (2006) Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome 49:1227–1237 Google Scholar
  29. Prioul S, Onfroy C, Tivoli B, Baranger A (2003) Controlled environment assessment of partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) seedlings. Euphytica 131:121–130CrossRefGoogle Scholar
  30. Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334PubMedCrossRefGoogle Scholar
  31. Prioul-Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Pilet-Nayel ML, Baranger A (2007) Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114:971–984PubMedCrossRefGoogle Scholar
  32. Roger C, Tivoli R (1996) Spatio temporal development of pynidia and perithecia and dissemination of spores of Mycosphaerella pinodes on pea (Pisum sativum). Plant Pathol 45:518–528CrossRefGoogle Scholar
  33. Román B, Torres AM, Rubiales D, Cubero JI, Satovic Z (2002) Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk) resistance in faba bean (Vicia faba L). Genome 45:1057–1063PubMedCrossRefGoogle Scholar
  34. Román B, Satovic Z, Avila CM, Rubiales D, Moreno MT, Torres AM (2003) Locating genes associated with Ascochyta fabae resistance in Vicia faba L. Aust J Agric Res 54:85–90CrossRefGoogle Scholar
  35. Rubiales D, Pérez-de-Luque A, Cubero JI, Sillero JC (2003) Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot 22:865–872CrossRefGoogle Scholar
  36. Rubio J, Hajj Moussa E, Kharrat M, Moreno MT, Millán T, Gil J (2003) Two genes and linked RAPD markers involved in resistance to Fusarium oxisporum f sp Ciceris race 0 in chickpea. Plant Breed 122:188–191CrossRefGoogle Scholar
  37. Selander RK, Smith MH, Yahn SY, Johnson WE, Gentry JB (1971) Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Univ Texas Publ 7103:49–90Google Scholar
  38. Sybenga J (1996) Recombination and chiasma: few but intriguing discrepancies. Genome 39:473–484PubMedGoogle Scholar
  39. Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Balde S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491PubMedCrossRefGoogle Scholar
  40. Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Murray S, Falloon K (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111CrossRefGoogle Scholar
  41. Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Johnston P, Lakeman MB, Russell AC, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631 PubMedCrossRefGoogle Scholar
  42. Tivoli B, Beasse C, Lemarchand E, Masson E (1996) Effect of ascochyta blight (Mycosphaerella pinodes) on yield components of single pea (Pisum sativum L.) plants under field conditions. Ann Appl Biol 129:207–216 CrossRefGoogle Scholar
  43. Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetinghan M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by the main world-wide necrotrophic fungi in grain legumes. Euphytica 147:223–253CrossRefGoogle Scholar
  44. Torres AM, Weeden NF, Martín A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945CrossRefGoogle Scholar
  45. Valderrama MR, Román B, Satovic Z, Rubiales D, Cubero JI, Torres AM (2004) Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res 44:1–6CrossRefGoogle Scholar
  46. Wallen VR (1965) Field evaluation of the importance of the Ascochyta complex of peas. Can J Plant Sci 45:27–33CrossRefGoogle Scholar
  47. Wang S, Basten CJ, Gaffney P, Zeng Z-B (2005) Windows QTL Cartographer version 2.5. Statistical Genetics, North Carolina State University, Raleigh, NCGoogle Scholar
  48. Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4Google Scholar
  49. Williams JGK, Kubelic AR, Livak KJ, Raflaski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetics markers. Nucleid Acids Res 18:6531–6535CrossRefGoogle Scholar
  50. Wroth JM (1996) Host- pathogen relationship of the ascochyta bligt (Mycosphaerella pinodes (Berk & Blox) Vesterg ) disease of field pea (Pisum sativum L ). PhD thesis. University of Western Australia, PerthGoogle Scholar
  51. Wroth JM (1998) Possible role for wild genotypes of Pisum spp. to enhance ascochyta bligt resistance in pea. Aust J Exp Agr 38:469–479CrossRefGoogle Scholar
  52. Wroth JM (1999) Evidence suggest that Mycosphaerella pinodes infection of Pisum sativum is inherited as a quantitative trait. Euphytica 107:193–204CrossRefGoogle Scholar
  53. Xue AG, Warkentin TD (2001) Partial resistance to Mycosphaerella pinodes in field pea. Can J Plant Sci 81:535–540Google Scholar
  54. Xue AG, Warkentin TD, Kenaschuk EO (1997) Effect of timings of inoculation with Mycosphaerella pinodes on yield and seed infection on field pea. Can J Plant Sci 77:685–689Google Scholar
  55. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar
  56. Zimmer MC, Sabourin D (1986) Determining resistance reaction of field pea cultivars at the seedling stage to Mycosphaerella pinodes. Phytopathology 76:878–881CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • S. Fondevilla
    • 1
  • Z. Satovic
    • 2
  • D. Rubiales
    • 3
  • M. T. Moreno
    • 1
  • A. M. Torres
    • 1
  1. 1.Centro Alameda del Obispo, Department of Breeding and BiotechnologyIFAPA, Junta de AndalucíaCordobaSpain
  2. 2.Department of Seed Science and TechnologyFaculty of AgricultureZagrebCroatia
  3. 3.Instituto de Agricultura SostenibleCSICCordobaSpain

Personalised recommendations