Skip to main content

Mapping multiple disease resistance genes using a barley mapping population evaluated in Peru, Mexico, and the USA

Abstract

We used a well-characterized barley mapping population (BCD 47 × Baronesse) to determine if barley stripe rust (BSR) resistance quantitative trait loci (QTL) mapped in Mexico and the USA were effective against a reported new race in Peru. Essentially the same resistance QTL were detected using data from each of the three environments, indicating that these resistance alleles are effective against the spectrum of naturally occurring races at these sites. In addition to the mapping population, we evaluated a germplasm array consisting of lines with different numbers of mapped BSR resistance alleles. A higher BSR disease severity on CI10587, which has a single qualitative resistance gene, in Peru versus Mexico suggests there are differences in pathogen virulence between the two locations. Confirmation of a new race in Peru will require characterization using a standard set of differentials, an experiment that is underway. The highest levels of resistance in Peru were observed when the qualitative resistance gene was pyramided with quantitative resistance alleles. We also used the mapping population to locate QTL conferring resistance to barley leaf rust and barley powdery mildew. For mildew, we identified resistance QTL under field conditions in Peru that are distinct from the Mla resistance that we mapped using specific isolates under controlled conditions. These results demonstrate the long-term utility of a reference mapping population and a well-characterized germplasm array for locating and validating genes conferring quantitative and qualitative resistance to multiple pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Backes G, Madsen LH, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A (2003) Localisation of genes for resistance against Blumeri graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line. Theor Appl Genet 106:353–362

    PubMed  CAS  Google Scholar 

  • Bushnell WR (2002) The role of powdery mildew research in understanding host-parasite interaction: past, present and future. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, MN, pp 1–12

    Google Scholar 

  • Castro AJ, Hayes PM, Fillichkin T, Rossi C (2002) Update of barley stripe rust resistance in the Calicuchima-sib x Bowman mapping population. Barley Genet Newsl 32:1–12

    Google Scholar 

  • Castro AJ, Capettini F, Corey AE, Fillichkin T, Hayes PM, Kleinhofs A, Kudrna D, Richardson K, Sandoval-Islas S, Rossi C, Vivar H (2003a) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930

    CAS  Article  Google Scholar 

  • Castro AJ, Chen XM, Hayes PM, Johnston M (2003b) Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at seedling stage. Crop Sci 43:651–659

    CAS  Article  Google Scholar 

  • Chelkowski J, Tyraka M, Sobkiewicz A (2003) Resistance genes in barley (Horedum vulgare) and their identification with molecular markers. J App Genet 44:291–309

    Google Scholar 

  • Chen F, Prehn D, Hayes PM, Mulrooney D, Corey A, Vivar H (1994) Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet 88:215–219

    CAS  Google Scholar 

  • Collinge DB, Gregersen PL, Thordal-Christensen H (2002) The nature and role of defense response genes in cereals. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, MN, pp 146–160

    Google Scholar 

  • Dreiseitl A (2003) Adapation of Blumeria graminis f.sp. hordei to barley resistance genes in the Czech Republic in 1971–2000. Plant Soil Environ 49:241–248

    Google Scholar 

  • Feurestein U, Brown AHD, Burdon JJ (1990) Linkage of rust resistance genes from wild Barley (Hordeum spontaneum) with isozyme markers. Plant Breed 104:318–324

    Article  Google Scholar 

  • Giese H, Jørgensen JH, Jensen HP, Jensen J (1981) Linkage relationships of ten powdery mildew resistance genes on barley chromosome 5. Hereditas 95:43–50

    Article  Google Scholar 

  • Hayes P, Prehn D, Vivar H, Blake T, Comeau A, Henry I, Johnston M, Jones B, Steffenson B, St. Pierre CA, Chen F (1996) Multiple disease resistance loci and their relationship to agronomic and quality loci in a spring barley population. http://probe.nalusda.gov:8000/otherdocs/jqtl/jqtl1996-02/jqtl22.html

  • Hayes PM, Castro A, Marquez-Cedillo L, Corey A, Henson C, Jones BL, Kling J, Mather D, Matus I, Rossi C, Sato K (2003) Genetic diversity for quantitative inherited agronomic and malting quality traits. In: von Bothmer R et al (eds) Diversity in barley (Hordeum vulgare). Elsevier Science Publishers, Amsterdam

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    CAS  Article  Google Scholar 

  • Hovmøller MS, Caffier V, Jalli M, Andersen O, Besenhofer G, Czembor JH, Dreiseitl A, Felsenstein F, Fleck A, Heinrics F, Jonsson R, Limpert E, Mercer P, Plesnik S, Rashal I, Skinnes H, Slater S, Vronska O (2000) The European barley powdery mildew virulence survey and disease nursery 1993–1999. Agronomie 20:729–743

    Article  Google Scholar 

  • Ji Y, Steffenson BJ, Fetch TG, Jr (1994) Sources of resistance to pathotype QCC of Puccinia graminis f. sp. tritici in barley. Crop Sci 34:285–288

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwich A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    CAS  Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Paterson AH, Zhao XH, Zhong DB, Wang YP, Yu XQ, Zhu L, Tabien R, Stansel JW, Ying CS (1999) A defeated rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Gen Genet 261:58–63

    PubMed  CAS  Article  Google Scholar 

  • Lindhout P (2002) The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124:217–226

    CAS  Article  Google Scholar 

  • Moseman JG (1972) Isogenic barley lines for reaction to Erysiphe graminis f. sp. hordei. Crop Sci 12:681–682

    Article  Google Scholar 

  • Narayanan NN, Baisakh N, Oliva NP, Vera Cruz CM, Gnanamanickam SS, Datta K, Datta SK (2004) Molecular breeding: marker assisted selection combined with biolistic transformation for blast and bacterial blight resistance in Indica rice (cv. CO39). Mol Breed 14:61–71

    CAS  Article  Google Scholar 

  • Park RF, Karakousis A (2002) Characterization and mapping of gene Rph19 conferring resistance to Puccinia hordei in the cultivar Reka 1 and several Australian barleys. Plant Breed 121:232–236

    CAS  Article  Google Scholar 

  • Qi X, Nicks EE, Stam P, Lindhourt P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215

    CAS  Article  Google Scholar 

  • Qi X, Jiang G, Chen W, Nicks RE, Stam P, Lindhourt P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theor Appl Genet 99:877–884

    CAS  Article  Google Scholar 

  • Sato K, Nankaku N, Motoi Y, Takeda K (2004) Large scale mapping of ESTs on barley genome. In: Spunar J, Janikova J (eds) Proceedings of the 9th International Barley Genetics Symposium, vol 1. Brno, Czech Republic, pp 79–85

    Google Scholar 

  • Schonfeld M, Ragni A, Fischbeck G, Jahoor A (1996) RFLP mapping of three new loci for resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) in barley. Theor Appl Genet 93:48–56

    Article  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST database for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131

    CAS  Article  Google Scholar 

  • Toojinda T, Baird E, Broers L, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Vivar H (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley. Theor Appl Genet 101:580–589

    CAS  Article  Google Scholar 

  • Torp J, Jensen HP, Jørgensen JH (1978) Powdery mildew resistance genes in 106 Northwest European spring barley varieties. Royal Veterinary and Agricultural University Yearbook, Copenhagen, pp 75–102

    Google Scholar 

  • Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    PubMed  CAS  Article  Google Scholar 

  • Vanderplank JE (1963) Plant diseases: epidemics and control. Academic Press, New York London, pp 349

    Google Scholar 

  • Vanderplank JE (1968) Disease resistance in plants. Academic Press, New York London, pp 206

    Google Scholar 

  • van Ooijen JW, Voorrips RE (2001) JoinMap 3.0 software for the calculation of genetic linkage maps. Biometris, Wageningen University, Plant Res. Int., The Netherlands

    Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2005) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Walker DR, Narvel JM, Boerma HR, All JN, Parrott WA (2004) A QTL that enhance and broadens Bt insect resistance in soybean. Theor Appl Genet 109:1051–1057

    PubMed  Article  Google Scholar 

  • Wei F, Gobelman-Werner K, Morroll S, Long J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise R (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    PubMed  CAS  Google Scholar 

  • Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54:1065–1079

    CAS  Article  Google Scholar 

  • Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genome 169:2277–2293

    CAS  Google Scholar 

  • Yan L, Echenique V, Busso C, SanMiguel P, Ramakrishna W, Bennetzen JL, Harrington S, Dubcovsky J (2002) Cereal genes similar to Snf2 define a new subfamily that includes human and mouse genes. Mol Gen Genet 268:488–499

    CAS  Google Scholar 

  • Yi G, Lee SK, Hong YK, Cho YC, Nam MH, Kim SC, Han SS, Wang GL, Hahn TR, Ronald PC, Jeon JS (2004) Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl Genet 109:978–985

    PubMed  CAS  Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We offer special thanks to Ann Corey, Tanya Filichkina, and Kelly Richardson for their technical support in the lab and in the preparation of Peru nurseries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hayes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rossi, C., Cuesta-Marcos, A., Vales, I. et al. Mapping multiple disease resistance genes using a barley mapping population evaluated in Peru, Mexico, and the USA. Mol Breeding 18, 355–366 (2006). https://doi.org/10.1007/s11032-006-9043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9043-0

Keywords

  • Hordeum vulgare subsp. vulgare
  • Puccinia striiformis f. sp. hordei
  • Puccinia hordei
  • Blumeria graminis f. sp. hordei
  • Quantitative resistance
  • Qualitative resistance