Advertisement

Molecular Breeding

, Volume 18, Issue 4, pp 355–366 | Cite as

Mapping multiple disease resistance genes using a barley mapping population evaluated in Peru, Mexico, and the USA

  • C. Rossi
  • A. Cuesta-Marcos
  • I. Vales
  • L. Gomez-Pando
  • G. Orjeda
  • R. Wise
  • K. Sato
  • K. Hori
  • F. Capettini
  • H. Vivar
  • X. Chen
  • P. Hayes
Article

Abstract

We used a well-characterized barley mapping population (BCD 47 × Baronesse) to determine if barley stripe rust (BSR) resistance quantitative trait loci (QTL) mapped in Mexico and the USA were effective against a reported new race in Peru. Essentially the same resistance QTL were detected using data from each of the three environments, indicating that these resistance alleles are effective against the spectrum of naturally occurring races at these sites. In addition to the mapping population, we evaluated a germplasm array consisting of lines with different numbers of mapped BSR resistance alleles. A higher BSR disease severity on CI10587, which has a single qualitative resistance gene, in Peru versus Mexico suggests there are differences in pathogen virulence between the two locations. Confirmation of a new race in Peru will require characterization using a standard set of differentials, an experiment that is underway. The highest levels of resistance in Peru were observed when the qualitative resistance gene was pyramided with quantitative resistance alleles. We also used the mapping population to locate QTL conferring resistance to barley leaf rust and barley powdery mildew. For mildew, we identified resistance QTL under field conditions in Peru that are distinct from the Mla resistance that we mapped using specific isolates under controlled conditions. These results demonstrate the long-term utility of a reference mapping population and a well-characterized germplasm array for locating and validating genes conferring quantitative and qualitative resistance to multiple pathogens.

Keywords

Hordeum vulgare subsp. vulgare Puccinia striiformis f. sp. hordei Puccinia hordei Blumeria graminis f. sp. hordei Quantitative resistance Qualitative resistance 

Notes

Acknowledgments

We offer special thanks to Ann Corey, Tanya Filichkina, and Kelly Richardson for their technical support in the lab and in the preparation of Peru nurseries.

References

  1. Backes G, Madsen LH, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A (2003) Localisation of genes for resistance against Blumeri graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line. Theor Appl Genet 106:353–362PubMedGoogle Scholar
  2. Bushnell WR (2002) The role of powdery mildew research in understanding host-parasite interaction: past, present and future. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, MN, pp 1–12Google Scholar
  3. Castro AJ, Hayes PM, Fillichkin T, Rossi C (2002) Update of barley stripe rust resistance in the Calicuchima-sib x Bowman mapping population. Barley Genet Newsl 32:1–12Google Scholar
  4. Castro AJ, Capettini F, Corey AE, Fillichkin T, Hayes PM, Kleinhofs A, Kudrna D, Richardson K, Sandoval-Islas S, Rossi C, Vivar H (2003a) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930CrossRefGoogle Scholar
  5. Castro AJ, Chen XM, Hayes PM, Johnston M (2003b) Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at seedling stage. Crop Sci 43:651–659CrossRefGoogle Scholar
  6. Chelkowski J, Tyraka M, Sobkiewicz A (2003) Resistance genes in barley (Horedum vulgare) and their identification with molecular markers. J App Genet 44:291–309Google Scholar
  7. Chen F, Prehn D, Hayes PM, Mulrooney D, Corey A, Vivar H (1994) Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet 88:215–219Google Scholar
  8. Collinge DB, Gregersen PL, Thordal-Christensen H (2002) The nature and role of defense response genes in cereals. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, MN, pp 146–160Google Scholar
  9. Dreiseitl A (2003) Adapation of Blumeria graminis f.sp. hordei to barley resistance genes in the Czech Republic in 1971–2000. Plant Soil Environ 49:241–248Google Scholar
  10. Feurestein U, Brown AHD, Burdon JJ (1990) Linkage of rust resistance genes from wild Barley (Hordeum spontaneum) with isozyme markers. Plant Breed 104:318–324CrossRefGoogle Scholar
  11. Giese H, Jørgensen JH, Jensen HP, Jensen J (1981) Linkage relationships of ten powdery mildew resistance genes on barley chromosome 5. Hereditas 95:43–50CrossRefGoogle Scholar
  12. Hayes P, Prehn D, Vivar H, Blake T, Comeau A, Henry I, Johnston M, Jones B, Steffenson B, St. Pierre CA, Chen F (1996) Multiple disease resistance loci and their relationship to agronomic and quality loci in a spring barley population. http://probe.nalusda.gov:8000/otherdocs/jqtl/jqtl1996-02/jqtl22.htmlGoogle Scholar
  13. Hayes PM, Castro A, Marquez-Cedillo L, Corey A, Henson C, Jones BL, Kling J, Mather D, Matus I, Rossi C, Sato K (2003) Genetic diversity for quantitative inherited agronomic and malting quality traits. In: von Bothmer R et al (eds) Diversity in barley (Hordeum vulgare). Elsevier Science Publishers, AmsterdamGoogle Scholar
  14. Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128CrossRefGoogle Scholar
  15. Hovmøller MS, Caffier V, Jalli M, Andersen O, Besenhofer G, Czembor JH, Dreiseitl A, Felsenstein F, Fleck A, Heinrics F, Jonsson R, Limpert E, Mercer P, Plesnik S, Rashal I, Skinnes H, Slater S, Vronska O (2000) The European barley powdery mildew virulence survey and disease nursery 1993–1999. Agronomie 20:729–743CrossRefGoogle Scholar
  16. Ji Y, Steffenson BJ, Fetch TG, Jr (1994) Sources of resistance to pathotype QCC of Puccinia graminis f. sp. tritici in barley. Crop Sci 34:285–288Google Scholar
  17. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwich A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712CrossRefGoogle Scholar
  18. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175Google Scholar
  19. Li ZK, Luo LJ, Mei HW, Paterson AH, Zhao XH, Zhong DB, Wang YP, Yu XQ, Zhu L, Tabien R, Stansel JW, Ying CS (1999) A defeated rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Gen Genet 261:58–63PubMedCrossRefGoogle Scholar
  20. Lindhout P (2002) The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124:217–226CrossRefGoogle Scholar
  21. Moseman JG (1972) Isogenic barley lines for reaction to Erysiphe graminis f. sp. hordei. Crop Sci 12:681–682CrossRefGoogle Scholar
  22. Narayanan NN, Baisakh N, Oliva NP, Vera Cruz CM, Gnanamanickam SS, Datta K, Datta SK (2004) Molecular breeding: marker assisted selection combined with biolistic transformation for blast and bacterial blight resistance in Indica rice (cv. CO39). Mol Breed 14:61–71CrossRefGoogle Scholar
  23. Park RF, Karakousis A (2002) Characterization and mapping of gene Rph19 conferring resistance to Puccinia hordei in the cultivar Reka 1 and several Australian barleys. Plant Breed 121:232–236CrossRefGoogle Scholar
  24. Qi X, Nicks EE, Stam P, Lindhourt P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215CrossRefGoogle Scholar
  25. Qi X, Jiang G, Chen W, Nicks RE, Stam P, Lindhourt P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theor Appl Genet 99:877–884CrossRefGoogle Scholar
  26. Sato K, Nankaku N, Motoi Y, Takeda K (2004) Large scale mapping of ESTs on barley genome. In: Spunar J, Janikova J (eds) Proceedings of the 9th International Barley Genetics Symposium, vol 1. Brno, Czech Republic, pp 79–85Google Scholar
  27. Schonfeld M, Ragni A, Fischbeck G, Jahoor A (1996) RFLP mapping of three new loci for resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) in barley. Theor Appl Genet 93:48–56CrossRefGoogle Scholar
  28. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST database for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  29. Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131CrossRefGoogle Scholar
  30. Toojinda T, Baird E, Broers L, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Vivar H (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley. Theor Appl Genet 101:580–589CrossRefGoogle Scholar
  31. Torp J, Jensen HP, Jørgensen JH (1978) Powdery mildew resistance genes in 106 Northwest European spring barley varieties. Royal Veterinary and Agricultural University Yearbook, Copenhagen, pp 75–102Google Scholar
  32. Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270PubMedCrossRefGoogle Scholar
  33. Vanderplank JE (1963) Plant diseases: epidemics and control. Academic Press, New York London, pp 349Google Scholar
  34. Vanderplank JE (1968) Disease resistance in plants. Academic Press, New York London, pp 206Google Scholar
  35. van Ooijen JW, Voorrips RE (2001) JoinMap 3.0 software for the calculation of genetic linkage maps. Biometris, Wageningen University, Plant Res. Int., The NetherlandsGoogle Scholar
  36. Wang S, Basten CJ, Zeng Z-B (2005) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)Google Scholar
  37. Walker DR, Narvel JM, Boerma HR, All JN, Parrott WA (2004) A QTL that enhance and broadens Bt insect resistance in soybean. Theor Appl Genet 109:1051–1057PubMedCrossRefGoogle Scholar
  38. Wei F, Gobelman-Werner K, Morroll S, Long J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise R (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948PubMedGoogle Scholar
  39. Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54:1065–1079CrossRefGoogle Scholar
  40. Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genome 169:2277–2293Google Scholar
  41. Yan L, Echenique V, Busso C, SanMiguel P, Ramakrishna W, Bennetzen JL, Harrington S, Dubcovsky J (2002) Cereal genes similar to Snf2 define a new subfamily that includes human and mouse genes. Mol Gen Genet 268:488–499Google Scholar
  42. Yi G, Lee SK, Hong YK, Cho YC, Nam MH, Kim SC, Han SS, Wang GL, Hahn TR, Ronald PC, Jeon JS (2004) Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl Genet 109:978–985PubMedCrossRefGoogle Scholar
  43. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • C. Rossi
    • 1
    • 2
  • A. Cuesta-Marcos
    • 3
  • I. Vales
    • 1
  • L. Gomez-Pando
    • 4
  • G. Orjeda
    • 5
  • R. Wise
    • 6
  • K. Sato
    • 7
  • K. Hori
    • 7
  • F. Capettini
    • 8
  • H. Vivar
    • 8
  • X. Chen
    • 9
  • P. Hayes
    • 1
  1. 1.Department of Crop and Soil ScienceOregon State UniversityCorvallisUSA
  2. 2.Instituto Nacional de Investigacion Agropecuaria (INIA)ColoniaUruguay
  3. 3.Estación Experimental de Aula Dei (CSIC)ZaragozaSpain
  4. 4.University of Nacional Agraria La MolinaLimaPerú
  5. 5.Universidad Peruana Cayetano HerediaLimaPeru
  6. 6.Corn Insects and Crop Genetics Research, USDA-ARS & Department of Plant PathologyIowa State UniversityAmesUSA
  7. 7.Research Institute for BioresourcesOkayama UniversityKurashikiJapan
  8. 8.ICARDA/CIMMYTEl BatanMexico
  9. 9.USDA/ARSPullmanUSA

Personalised recommendations