Skip to main content
Log in

Repetitive Indel Markers within the ALMT1 Gene Conditioning Aluminium Tolerance in Wheat (Triticum aestivum L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

ALMT1 gene encoding a membrane protein that facilitates an aluminium stimulated malate efflux has been characterised and mapped in wheat (Triticum aestivum L.). Here, we have identified molecular markers targeting insertion/deletion (indel) and SSR repeats within intron 3 region of the ALMT1 gene. Both the markers: ALMT1-SSR3a and ALMT1-SSR3b based on repetitive indels, exhibited complete cosegregation with Al tolerance, malate efflux, and a CAPS marker discriminating ALMT1-1 and ALMT1-2 alleles, in a doubled haploid population derived from Diamondbird (Al-tolerant)/Janz (Al-sensitive). A parental screen of 20 diverse wheat genotypes with repetitive indel markers indicated that six allele variants exist at the ALMT1SSR3 locus. Sequence analysis confirmed that these variations were due to indels, copy number of SSR repeats, and base substitution within SSR repeats. The higher level of variation in intron 3 suggests that this genomic region has been constrained by indels, SSR and single nucleotide polymorphisms. Results have proven that repetitive indel markers cosegregating with the Al tolerance locus will be useful for marker assisted selection and population and evolution studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Harding RM, Boyce AJ, Clegg JB (1992) The evolution of tandemly repetitive DNA: recombinant rules. Genetics 132:847–859

    PubMed  CAS  Google Scholar 

  • Fisher JA, Scott BJ (1993) Are we justified in breeding wheat for tolerance to acid soils in southern New South Wales? In: Randall PJ, Delhaize E, Richards RA, Munns R (eds) Genetic aspects of plant mineral nutrition. Kluwer Academic Publishers, Dordrecht, The Netherland, pp 1–8

    Google Scholar 

  • Kerridge PC, Kronstad WE (1968) Evidence of genetic resistance to Al toxicity in wheat (Triticum aestivum Vill., Host). Crop Sci 60:710–711

    Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  • Luo M-C, Dvorák J (1996) Molecular mapping of an aluminum tolerance locus chromosome 4D of Chinese Spring wheat. Euphytica 91:31–35

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Macaulay M, Ramsay L, Powell WR, Waugh R (2001) A representative, highly informative ‘genotyping set’ of barley SSRs. Theor Appl Genet 102:801–809

    Article  CAS  Google Scholar 

  • Magnuson VL, Ally DS, Nylund SJ, Karanjawala ZE, Rayman JB, Knapp JI, Lowe AL, Ghosh S, Collins FS (1996) Substrate nucleotide-determined non-templated addition of adenine by Taq DNA polymerase: implications for PCR-based genotyping and cloning. BioTechniques 21:700–709

    PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Metais I, Hamon B, Jalouzot R, Peliter D (2002) Structure and level of genetic diversity in various beans types evidenced with microsatellites markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Ometto L, Wolfgang S, De Lorenzo D (2005) Insertion/deletion and nucleotide polymorphism data reveal constraints in Drosophila melanogaster introns and intergenic regions. Genetics 169:1521–1527

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Tanksley SD, Sorrells ME (1991) DNA markers in plant improvement. Adv Agron 46:39–90

    Article  CAS  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827

    Article  CAS  Google Scholar 

  • Raman H, Moroni JS, Sato K, Read BJ, Scott B (2002) Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458–464

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Zhang K, Cakir M, Appels R, Moroni S, Kochian L, Raman R, Delhaize M, Muhammad I, Drake-Brockman F, Garvin D, Waters I, Hebb D, Martin P, Sasaki T, Matsumoto H, Ryan P (2005a) Molecular mapping and characterization of the ALMT1 gene in bread wheat (Triticum aestivum L.). Genome 48:781–791

    CAS  Google Scholar 

  • Raman R, Raman H, Johnstone K, Lisle C, Smith A, Martin P, Allen H (2005b) Genetic and in silico comparative mapping of the polyphenol oxidase gene in bread wheat. Funct Integr Genomics 5:185–200

    Article  CAS  Google Scholar 

  • Rampling LR, Harker N, Shariflou MR, Morell MK (2001) Detection and analysis systems for microsatellite markers in wheat. Aust J Agric Res 52:1131–1141

    Article  CAS  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Rodriguez-Milla MAR, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995a) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust J Plant Physiol 22:531–536

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995b) Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–111

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (1994) Split genes and RNA splicing. Cell 77:805–815

    Article  PubMed  CAS  Google Scholar 

  • Shinde D, Lai YL, Sun FZ, Arnheim N (2003) Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acid Res 31:974–980

    Article  PubMed  CAS  Google Scholar 

  • Stephan WM, Kim Y (1998) Persistence of microsatellite arrays in finite population. Mol Biol Evol 15:1332–1336

    PubMed  CAS  Google Scholar 

  • Stodart B, Raman H, Coombes N, Mackay M (2006) Evaluating landraces of bread wheat for tolerance to aluminium under low pH conditions. Genet Resour Crop Evol. DOI: 10.1007/s10722-006-0001-9

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    Article  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wierdl M, Dominska M, Petes D (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146:769–779

    PubMed  CAS  Google Scholar 

  • Wolff RK, Plaeke R, Jeffery AJ, White R (1991) Unequal crossing over between homologous chromosomes is not the major mechanisms involved in the generation of new alleles at VNTR loci. Genomics 5:382–384

    Article  Google Scholar 

  • Wood S, Sebastian K, Scherr S (2000) Soil resource condition. In: Pilot analysis of global ecosystems: agroecosystems. International Food Policy Research Institute and the World Resources Institute, Washington, DC, pp 45–54

  • Yang W, Zheng Y, Ni S, Wu J (2004) Recessive allelic variations of three microsatellite sites within O2 gene in maize. Plant Mol Biol Rep 22:361–374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the NSW Agricultural Genomics Centre of BioFirst Initiative of NSW Government and NSWDPI for supporting this project. We thank Fiona Wray for technical assistance and Greg Grimes (Australian Winter Cereal Collection, Tamworth) for providing seeds of some wheat accessions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Raman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, H., Raman, R., Wood, R. et al. Repetitive Indel Markers within the ALMT1 Gene Conditioning Aluminium Tolerance in Wheat (Triticum aestivum L.). Mol Breeding 18, 171–183 (2006). https://doi.org/10.1007/s11032-006-9025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9025-2

Keywords

Navigation