Skip to main content
Log in

Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis

  • Original Paper
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Lipid soluble tocochromanols, only synthesised in photosynthetic organisms, are industrially interesting compounds because of their antioxidative properties and their essential function in nutrition. In order to increase the tocochromanol content in the seed oil of transgenic plants, approaches were undertaken to engineer the flux of substrates and intermediates through the pathway. To this end, we overexpressed genes encoding hydroxyphenylpyruvate dioxygenases, alone or in combination with chimeric homogentisate phytyltransferase and tocopherol cyclase genes, in seeds of transgenic Brassica napus plants and analysed total tocochromanol content and composition. Overexpression of chimeric hydroxyphenylpyruvate dioxygenase genes, both in the cytosol or in the plastids of developing seeds, yielded a slight although significant increase in total tocochromanol level. Coexpression of a hydroxyphenylpyruvate dioxygenase gene with both a homogentisate phytyltransferase gene and a tocopherol cyclase gene elevated this effect with maximum increases of up to two-fold in individual lines and this phenotype was found to be stably inherited. These data showed that the three enzymes are critical in determining the total tocochromanol content in the seed oil of Brassica napus plants, while the tocopherol cyclase, unlike hydroxyphenylpyruvate dioxygenase and homogentisate phytyltransferase, had additionally an effect on the relative abundance of individual tocochromanol species and resulted in an increase of δ-tocopherol and plastochromanol-8 in the seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMGGBQ:

2,3-dimethyl-5-geranylgeranyl-1,4-benzoquinol

DMPBQ:

2,3-dimethyl-5-phytyl-1,4- benzoquinol

DMSBQ:

2,3-dimethyl-5-solanesyl-1,4-benzoquinol

HPPD:

4-hydroxyphenylpyruvate dioxygenase

HGGT:

homogentisate geranylgeranyltransferase

HPT:

homogentisate phytyltransferase

HST:

homogentisate solanesyl transferase

MPBQ:

2-methyl-6-phytyl-1,4-benzoquinol

MGGBQ:

2-methyl-6-geranylgeranyl-1,4-benzoquinol

MSBQ:

2-methyl-6-solanesyl-1,4-benzoquinol

MT1:

MPBQ/MGGBQ/MSBQ methyltransferase

MT2:

γ-tocopherol methyltransferase

P-8:

plastochromanol-8

TC:

tocopherol cyclase

References

  • Arango Y, Heise KP (1998) Tocopherol synthesis from homogentisate in Capsicum annuum L. (yellow pepper) chromoplast membranes: evidence for tocopherol cyclase. Biochem J 336:531–533

    PubMed  CAS  Google Scholar 

  • Azzi A, Ricciarelli R, Zingg JM (2002) Non-antioxidant molecular functions of alpha-tocopherol (vitamin E). FEBS Lett 519:8–10

    Article  PubMed  CAS  Google Scholar 

  • Balz M, Schulte E, Thier HP (1992) Trennung von Tocopherolen und Tocotrienolen durch HPLC. Fat Sci Technol 94:209–213

    Google Scholar 

  • Borowski T, Bassan A, Siegbahn PE (2004) 4-Hydroxyphenylpyruvate dioxygenase: a hybrid density functional study of the catalytic reaction mechanism. Biochemistry 43:12331–12342

    Article  PubMed  CAS  Google Scholar 

  • Chan SS, Monteiro HP, Schindler F, Stern A, Junqueira VBC (2001) Alpha-tocopherol modulates tyrosine phosphorylation in human neutrophils by inhibition of protein kinase C activity and activation of tyrosine phosphatases. Free Radic Res 35:843–856

    Article  PubMed  CAS  Google Scholar 

  • Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Collakova E, DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632–642

    Article  PubMed  CAS  Google Scholar 

  • Dahnhardt D, Falk J, Appel J, van der Kooij TA, Schulz-Friedrich R, Krupinska K (2002) The hydroxyphenylpyruvate dioxygenase from Synechocystis sp. PCC 6803 is not required for plastoquinone biosynthesis. FEBS Lett 523:177–181

    Article  PubMed  CAS  Google Scholar 

  • Denoya CD, Skinner DD, Morgenstern MR (1994) A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J Bacteriol 176:5312–5319

    PubMed  CAS  Google Scholar 

  • Falk J, Andersen G, Kernebeck B, Krupinska K (2003) Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Lett 540:35–40

    Article  PubMed  CAS  Google Scholar 

  • Falk J, Brosch M, Schäfer A, Braun S, Krupinska K (2005) Characterization of transplastomic tobacco plants with a plastid localized barley 4-hydroxyphenyl-pyruvate dioxygenase. J Plant Physiol 162:738–742

    Article  PubMed  CAS  Google Scholar 

  • Fritze IM, Linden L, Freigang J, Auerbach G, Huber R, Steinbacher S (2004) The crystal structures of Zea mays and Arabidopsis 4-hydroxyphenylpyruvate dioxygenase. Plant Physiol 134:1388–1400

    Article  PubMed  CAS  Google Scholar 

  • Fuqua WC, Coyne VE, Stein DC, Lin CM, Weiner RM (1991) Characterization of melA: a gene encoding melanin biosynthesis from the marine bacterium Shewanella colwelliana. Gene 109:131–136

    Article  PubMed  CAS  Google Scholar 

  • Garcia I, Rodgers M, Pepin R, Hsieh TF, Matringe M (1999) Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol 119:1507–1516

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hofius D, Sonnewald U (2003) Vitamin E biosynthesis: biochemistry meets cell biology. Trends Plant Sci 8:6–8

    Article  PubMed  CAS  Google Scholar 

  • Hummel R, Norgaard P, Andreasen PH, Neve S, Skjodt K, Tornehave D, Kristiansen K (1992) Tetrahymena gene encodes a protein that is homologous with the liver-specific F-antigen and associated with membranes of the Golgi apparatus and transport vesicles. J Mol Biol 228:850–861

    Article  PubMed  CAS  Google Scholar 

  • Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477

    Article  PubMed  CAS  Google Scholar 

  • Karunanandaa B, Qi Q, Hao M, Baszis S, Jensen P, Wong YHH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D, Weiss JD, Valentin HE (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Met Eng 7:384–400

    Article  CAS  Google Scholar 

  • Kleber-Janke T, Krupinska K (1997) Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions. Planta 203:332–340

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Raclaru M, Schüsseler T, Gruber J, Sadre R, Lühs W, Zarhloul KM, Friedt W, Enders D, Frentzen M, Weier D (2005) Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett 579:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lenne C, Matringe M, Roland A, Sailland A, Pallett K, Douce R (1995) Partial purification and localization of p-hydroxyphenylpyruvate dioxygenase activity from cultured carrot cells. In: Mathis P (eds) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht The Netherlands, pp␣285–288

    Google Scholar 

  • Lichtenthaler HK (1998) The plants’ 1-deoxy-d-xylulose-5-phosphate pathway for biosynthesis of isoprenoids. Fett Lipid 100:128–138

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Prenzel U, Douce R, Joyard J (1981) Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim Biophys Acta 641:99–105

    Article  PubMed  CAS  Google Scholar 

  • Marshall PS, Morris SR, Threlfall DR (1985) Biosynthesis of tocopherols: a re-examination of the biosynthesis and metabolism of 2-methyl-6-phytyl-1,4-benzoquinol. Phytochemistry 24:1705–1711

    Article  CAS  Google Scholar 

  • Marwede V, Schierholt A, Möllers C, Becker HC (2004) Genotype × environment interactions and heritability of tocopherol contents in Canola. Crop Sci 44:728–731

    Article  Google Scholar 

  • Matringe M, Sailland A, Pelissier B, Rolland A, Zink O (2005) p-Hydroxyphenylpyruvate dioxygenase inhibitor-resistant plants. Pest Manag Sci 61:269–276

    Article  PubMed  CAS  Google Scholar 

  • Menhaj AR, Mishra SK, Bezhani S, Kloppstech K (1999) Posttranscriptional control in the expression of the genes coding for high-light-regulated HL#2 proteins. Planta 209:406–413

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Falk J (2004) New insights into the function of tocopherols in plants. Planta 218:323–326

    Article  PubMed  CAS  Google Scholar 

  • Olejnik D, Gogolewski M, Nogala-Kalucka M (1997) Isolation and some properties of plastochromanol-8. Nahrung 41:101–104

    Article  CAS  Google Scholar 

  • Padidam M, Cao Y (2001) Elimination of transcriptional interference between tandem genes in plant cells. Biotechniques 31:328–334

    PubMed  CAS  Google Scholar 

  • Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ (2004) Is the distribution of α-tocopherol in membranes consistent with its putative functions? Biochemistry 69:74–84

    Google Scholar 

  • Rippert P, Scimemi C, Dubald M, Matringe M (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol 134:92–100

    Article  PubMed  CAS  Google Scholar 

  • Rippka R (1988) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M (1998) Isoprenoid biosynthesis via the mevalonate-independent route, a novel target for antibacterial drugs? Prog Drug Res 50:135–154

    PubMed  CAS  Google Scholar 

  • Ruetschi U, Odelhog B, Lindstedt S, Barros-Soderling J, Persson B, Jornvall H (1992) Characterization of 4-hydroxyphenylpyruvate dioxygenase. Primary structure of the Pseudomonas enzyme. Eur J Biochem 205:459–466

    Article  PubMed  CAS  Google Scholar 

  • Ruetschi U, Rymo L, Lindstedt S (1997) Human 4-hydroxyphenylpyruvate dioxygenase gene (HPD). Genomics 44:292–299

    Article  PubMed  CAS  Google Scholar 

  • Sadre R, Paus H, Frentzen M, Weier D (2003) Characterisation of enzymes involved in tocopherol biosynthesis. In: Murata N (ed) Advanced research on plant lipids. Kluwer Academic Publishers, Dordrecht, pp 253–256

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press

  • Sattler SE, Cheng Z, DellaPenna D (2004) From Arabidopsis to agriculture: engineering improved vitamin E content in soybean. Trends Plant Sci 9:365–367

    Article  PubMed  CAS  Google Scholar 

  • Savidge B, Weiss JD, Wong YH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–332

    Article  PubMed  CAS  Google Scholar 

  • Schledz M, Seidler A, Beyer P, Neuhaus G (2001) A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett 499:15–20

    Article  PubMed  CAS  Google Scholar 

  • Schneider C (2005) Chemistry and biology of vitamin E. Mol Nutr Food Res 49:7–30

    Article  PubMed  CAS  Google Scholar 

  • Schulz A, Ort O, Beyer P, Kleinig H (1993) SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett 318:162–166

    Article  PubMed  CAS  Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Soll J (1987) α-Tocopherol and plastoquinone synthesis in chloroplast membranes. Methods Enzymol 148:383–392

    CAS  Google Scholar 

  • Soll J, Schultz G, Joyard J, Douce R, Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys 238:290–299

    Article  PubMed  CAS  Google Scholar 

  • Spiekermann P (2005) Isolierung und Charakterisierung von Genkopien der mikrosomalen Oleatdesaturase FAD2 aus Brassica napus L. sowie Entwicklung transgener Rapspflanzen mit erhöhtem ölsäuregehalt im Samen. PhD thesis, Hamburg University

  • Thies W (1997) Quantitative Bestimmung der Tocopherole durch HPLC. Angew Bot 71:62–67

    CAS  Google Scholar 

  • Threlfall DR, Whistance GR (1971) Biosynthesis of isoprenoid quinones and chromanols. In: Goodwin T (ed) Aspects of terpenoid chemistry and biochemistry. Academic Press, Liverpool UK, pp 357–404

    Google Scholar 

  • Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Annu Rev Nutr 16:321–347

    Article  PubMed  CAS  Google Scholar 

  • Tsegaye J, Shintani D, della Penna D (2002) Overexpression of the enzyme p-hydroxyphenylpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40: 913–920

    Article  CAS  Google Scholar 

  • Valentin HE, Qi Q (2005) Biotechnological production and application of vitamin E: current state and prospects. Appl Microbiol Biotechnol 68:436–444

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff EE, Pishko EJ, Kirkland TN, Cole GT (1995) Cloning and expression of a gene encoding a T-cell reactive protein from Coccidioides immitis: homology to 4-hydroxyphenylpyruvate dioxygenase and the mammalian F antigen. Gene 161:107–111

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi J, Iwamoto T, Kida S, Masushige S, Yamada K, Esashi T (2001) Tocopherol-associated protein is a ligand-dependent transcriptional activator. Biochem Biophys Res Commun 285:295–299

    Article  PubMed  CAS  Google Scholar 

  • Zarhloul MK, Friedt W, Khoschkhoi Yazdi MR, Lühs W (1999) Genetic transformation and shoot regeneration ability of resynthesised Brassica napus line ‘RS 306’. Cruciferae Newsl 21:59–60

    Google Scholar 

Download references

Acknowledgements

The authors thank Christof Stoll for performing statistical analysis and Ingrid Klawiter, Marion Heitmann, Petra Degen, Gabi Ciobanu, Ingrid Frantz, Violeta Cadar, Sonja Sahner and Stavros Tzigos for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Weier.

Additional information

Mirela Raclaru and Jens Gruber contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raclaru, M., Gruber, J., Kumar, R. et al. Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis. Mol Breeding 18, 93–107 (2006). https://doi.org/10.1007/s11032-006-9014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9014-5

Keywords

Navigation