Molecular Breeding

, Volume 16, Issue 3, pp 209–218 | Cite as

A Novel STS Marker for Polyphenol Oxidase Activity in Bread Wheat

  • D. J. Sun
  • Z. H. HeEmail author
  • X. C. XiaEmail author
  • L. P. Zhang
  • C. F. Morris
  • R. Appels
  • W. J. Ma
  • H. Wang


The enzyme activity of polyphenol oxidase (PPO) in grain has been related to undersirable brown discoloration of bread wheat (Triticum aestivum L.) based end-products, particularly for Asian noodles. Breeding wheat cultivars with low PPO activity is the best approach to reduce the undesirable darkening. Molecular markers could greatly improve selection efficiency in breeding programs. Based on the sequences of PPO genes (GenBank Accession Numbers AY596268, AY596269 and AY596270) conditioning PPO activity during kernel development, 28 pairs of primers were designed using the software ‘DNAMAN’. One of the markers from AY596268, designated as PPO18, can amplify a 685-bp and an 876-bp fragment in the cultivars with high and low PPO activity, respectively. The difference of 191-bp size was detected in the intron region of the PPO gene. The STS marker PPO18 was mapped to chromosome 2AL using a DH population derived from a cross Zhongyou 9507× CA9632, a set of nulli-tetrasomic lines and ditelosomic line 2AS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the STS marker PPO18 and is closely linked to Xgwm312 and Xgwm294 on chromosome 2AL, explaining 28–43% of phenotypic variance for PPO activity across three environments. A total of 233 Chinese wheat cultivars and advanced lines were used to validate the correlation between the polymorphic fragments of PPO18 and grain PPO activity. The results showed that PPO18 is a co-dominant, efficient and reliable molecular marker for PPO activity and can be used in wheat breeding programs targeted for noodle quality improvement.


Bread wheat Marker-assisted selection Polyphenol oxidase activity STS marker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexei, F., Scott, R., Larisa, F., Walter, G. 2003Mystery of intron gainGenome Res.1322362241Google Scholar
  2. Anderson, J.V., Morris, C.F. 2001An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activityCrop Sci.4116971705Google Scholar
  3. Anderson, J.V., Morris, C.F. 2003Purification and analysis of wheat grain polyphenol oxidase (PPO) proteinCereal Chem.80135143Google Scholar
  4. Anderson J.V. 2004. Triticum aestivum polyphenol oxidase (PPO) mRNA: GenBank Accession Number AY515506 (
  5. Asins, M.J. 2002Present and future of quantitative trait locus analysis in plant breedingPlant Breed.121281291CrossRefGoogle Scholar
  6. Baik, B.K., Czuchajowsk, Z., Pomeranz, Y. 1994Comparison of polyphenol oxidase in wheats and flours from Australian and US cultivarsJ. Cereal Sci.19291296CrossRefGoogle Scholar
  7. Baik, B.K., Czuchajowska, Z., Pomeranz, Y. 1995Discoloration of dough for oriential noodlesCereal Chem.72198205Google Scholar
  8. Bryan, G.J., Stephenson, P., Collins, A., Kirby, J., Smith, J.B., Gale, M.D. 1999Low levels of DNA sequence variation among adapted genotypes of hexaploid wheatTheor. Appl. Genet.99192198Google Scholar
  9. Bucheli, C.S., Dry, I.B., Robinson, S.M. 1996Isolation of a full-length cDNA encoding polyphenol oxidase from sugarcanea C4 grassPlant Mol. Biol.312331238Google Scholar
  10. Crosbie G.B., Solah V.A., Chiu P. and Lambe W.J. 1996. Selection for improved color stability in noodles. In: Wrigley C.W.(ed.), Proc. Aust. Cereal Chem. Conf., 46thSydney, Royal Australian Chem. Inst., North MelbourneVIC, Australia pp. 120–122.Google Scholar
  11. Demeke, T., Morris, C.F., Campbell, K.G., King, G.E., Anderson, J.A., Chang, H.G. 2001Wheat polyphenol oxidase distribution and genetic mapping in three inbred line populationsCrop Sci.4117501757CrossRefGoogle Scholar
  12. Demeke, T., Morris, C.F. 2002Molecular characterization of wheat polyphenol oxidase (PPO). TheorAppl. Genet.104813818Google Scholar
  13. Dibb, N.J., Newman, A.J. 1989Evidence that introns arose at proto-splice sitesEMBO. J.820152021PubMedGoogle Scholar
  14. Doyle, J.J., Doyle, J.L. 1987A rapid DNA isolation procedure for small quantities of fresh leaf tissuePhytochem. Bull.191115Google Scholar
  15. Fedorova, L., Fedorov, A. 2003Introns in gene evolutionGenetica118123131PubMedCrossRefGoogle Scholar
  16. Flurkey, W.H. 1989Polypeptide composition and amino-terminal sequence of broad bean polyphenol oxidasePlant Physiol.91481483CrossRefPubMedGoogle Scholar
  17. Ge, X.X., He, Z.H., Yang, J., Zhang, Q.J. 2003Polyphenol oxidase activities of Chinese winter wheat cultivars and correlations with quality characteristicsActa Agron. Sin.29481485Google Scholar
  18. Hatcher, D.W., Symons, S.J., Kruger, J.E. 1999Measurement of time-dependent appearance of discolored spots in alkaline noodles by image analysisCereal Chem.76189194Google Scholar
  19. He, Z.H., Yang, J., Zhang, Y., Quail, K.J., Pena, R.J. 2004Pan bread and dry white Chinese noodle quality in Chinese winter wheatsEuphytica139257267CrossRefGoogle Scholar
  20. Huang, X.Q., Röder, M.S. 2004Molecular mapping of powdery mildew resistance genes in wheat: a reviewEuphytica137203223CrossRefGoogle Scholar
  21. Liu, J.J., He, Z.H., Zhao, Z.D., Pena, R.J., Rajaram, S. 2003Wheat quality traits and quality parameters of cooked dry white Chinese noodlesEuphytica131147154CrossRefGoogle Scholar
  22. Jimenez, M., Dubcovsky, J. 1999Chromosome location of genes affecting polyphenol oxidase activity in seeds of common and durum wheatPlant Breed.118395398CrossRefGoogle Scholar
  23. Jukanti, A.K., Bruckner, P.L., Fischer, A.M. 2004Evaluation of wheat polyphenol oxidase genesCereal Chem.81481485Google Scholar
  24. Kruger, J.E., Matsuo, R.R., Preston, K. 1992A comparison of methods for the prediction of Cantonese noodle colourCan. J. Plant Sci.7210211029Google Scholar
  25. Kruger, J.E., Anderson, M.H., Dexter, J.E. 1994aEffect of flour refinement on raw Cantonese noodle color and textureCereal Chem.71177182Google Scholar
  26. Kruger, J.E., Hatcher, D.W., DePauw, R. 1994bA whole seed assay for polyphenol oxidase in Canadian prairie spring wheats and its usefulness as a measure of noodle darkeningCereal Chem.71324326Google Scholar
  27. Ma, Z.G., Wei, J.B., Cheng, S.H. 2004PCR-based markers for the powdery mildew resistance gene Pm4a in wheatTheor. Appl. Genet.109140145PubMedCrossRefGoogle Scholar
  28. Manly, K.F., Cudmore, R.H.,Jr., Meer, J.M. 2001Map Manager QTX, cross-platform software for genetic mappingMamm. Genome12930932PubMedCrossRefGoogle Scholar
  29. Mares, D.J., Campbell, A.W. 2001Mapping components of flour and noodle colour in Australian wheatAus. J. Agric. Res.5212971309Google Scholar
  30. Miskelly, D.M. 1996The use of alkaline for noodle processingKruger, J.E.Matsuo, R.B.Dick, J.W. eds. Pasta and Noodle TechnologyAmerican Assoc., Cereal ChemistsSt. Paul., MN227273Google Scholar
  31. Morris, C.F., Jeffers, H.C., Engle, D.A. 2000Effect of processing, formula and measurement variables on alkaline noodle color – toward an optimized laboratory systemCereal Chem.777785Google Scholar
  32. Nagao, S.,  et al. 1996Processing technology of noodle products in JapanKruger, J.E. eds. Pasta and Noodle TechnologyAmerican Assoc., Cereal ChemistsSt. Paul., MN169194Google Scholar
  33. Okot-Kotber, M., Liavoga, A., Yong, K.J., Bagorogoza, K. 2002Activation of polyphenol oxidase in extracts of bran from several wheat (Triticum aestivum) cultivars using organic solvents, detergents, and chaotropesJ. Agric. Food Chem.5024102417PubMedCrossRefGoogle Scholar
  34. Park, W.J., Shelton, D.R., Peterson, C.J., Martin, T.J., Kachman, S.D., Wehling, R.L. 1997Variation in polyphenol oxidase activity and quality characteristics among hard white wheat and hard red winter wheat samplesCereal Chem.74711Google Scholar
  35. Raman R., Raman H., Allen H., Martin P., Lisle C., Johnstone K. and Oliver J. 2004. Physical mapping and validation of polyphenol oxidase gene in wheat using in Silico comparative mapping approach. In: Cereals 2004, Proceedings of 54th Australian Cereal Chemistry Conference and 11th Wheat Breeder Assembly, pp. 238–241.Google Scholar
  36. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998A microsatellite map of wheatGenetics14920072023PubMedGoogle Scholar
  37. Suzu, S., Hatake, K., Ota, J., Mishima, Y., Yamada, M., Shimamura, S., Kimura, F., Motoyoshi, K. 1998Identification of alternatively spliced transcripts encoding murine macrophage colony-stimulating factorBiochem. Biophys. Res. Commun.245120126PubMedCrossRefGoogle Scholar
  38. Thanaraj, T.A., Clark, F. 2001Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positionNucleic Acids Res.2925812593PubMedCrossRefGoogle Scholar
  39. Thipyapong, P., Joel, D.M., Steffens, J.C. 1997Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive developmentPlant Physiol.113707718PubMedGoogle Scholar
  40. Udall, J. 1997Important alleles for noodle quality in winter wheat as identified by molecular markersUniversity of IdahoMoscow, IDM.S. ThesisGoogle Scholar
  41. Wang S.C., Basten C.J. and Zeng Z.B. 2004. Windows QTL cartographer 2.0: analyzing genetic agriculture of quantitative traits. (
  42. Xing, J.W., Shuai, S.R. 2002Amplification and sequence analysis of pig growth hormone (PGH) geneJ. Southwest Agric. Univ.24182185Google Scholar
  43. Yan, L., Bhave, M., Fairclough, R., Konik, C., Rahman, S., Appels, R. 2000The genes encoding granule-bound starch synthases at the waxy loci of the ABand D progenitors of common wheatGenome43264272PubMedCrossRefGoogle Scholar
  44. Zeng, Z.B. 1994Precision mapping of quantitative trait lociGenetics13614571468PubMedGoogle Scholar
  45. Zhang, L.P., Ge, X.X., He, Z.H., Wang, D.S., Yan, J., Xia, X.C., Sutherland, M.W. 2005Mapping QTLs for polyphenol oxidase activity in a DH population from common wheatActa Agron. Sin.31710Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • D. J. Sun
    • 1
    • 4
  • Z. H. He
    • 1
    • 5
    Email author
  • X. C. Xia
    • 1
    Email author
  • L. P. Zhang
    • 1
  • C. F. Morris
    • 2
  • R. Appels
    • 3
  • W. J. Ma
    • 3
  • H. Wang
    • 4
  1. 1.Institute of Crop Science/National Wheat Improvement CenterChinese Academy of Agricultural SciencesBeijingChina
  2. 2.USDA-ARS Western Wheat Quality LaboratoryWashington State UniversityPullmanUSA
  3. 3.Molecular Plant Breeding CRC, Department of Agriculture Western AustraliaMurdoch UniversityMurdoch, PerthAustralia
  4. 4.College of AgronomyNorthwest Sci-Tech University of Agriculture and ForestryYanglingChina
  5. 5.CIMMYT China OfficeC/O Chinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations