Skip to main content
Log in

The Novel Use of a Combination of Sonication and Vacuum Infiltration in Agrobacterium-mediated Transformation of Kidney Bean (Phaseolus vulgaris L.) with lea Gene

  • Published:
Molecular Breeding Aims and scope Submit manuscript


An efficient gene transfer system without tissue culture steps was developed for kidney bean by using sonication and vacuum infiltration assisted, Agrobacterium-mediated transformation. Transgenic kidney bean with a group 3 lea (late embryogenesis abundant) protein gene from Brassica napus was produced through this approach. Among 18 combinations of transformation methods, Agrobacterium-mediated transformation combined with 5 min sonication and 5 min vacuum infiltration turned to be optimal, resulting in the highest transformation efficiency. Transgenic kidney bean plants demonstrated enhanced growth ability under salt and water deficit stress conditions. The increased tolerance was also reflected by delayed development of damage symptoms caused by drought stress. Transgenic lines with high level of lea gene expression showed higher stress tolerance than lines with lower expression level. Stress tolerance of transgenic kidney bean correlated much better with lea gene expression levels than with gene integration results. There is no prior report on the production of transgenic kidney bean using both ultrasonic and vacuum infiltration assisted, Agrobacterium-mediated transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • K. Akama H. Shiraishi S. Ohta K. Nakamura K. Okada Y. Shimura (1992) ArticleTitleEfficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains Plant Cell Rep. 12 7–11 Occurrence Handle10.1007/BF00232413 Occurrence Handle1:CAS:528:DyaK3sXktVWqtr4%3D

    Article  CAS  Google Scholar 

  • R.C. Babu J. Zhang A. Blum D.T.-H. Ho R. Wu H.T. Nguyen (2004) ArticleTitle HVA1a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection Plant Sci. 166 855–862 Occurrence Handle1:CAS:528:DC%2BD2cXhs12msLo%3D

    CAS  Google Scholar 

  • Bray E.A., Bailey-Serres J. and Weretilnyk E. 2000. Responses to abiotic stresses. In: Buchanan B., Gruissem W. and Jones R. (eds), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, pp.1158–1176.

  • M.C. Byrne R.E. cDonnell M.S. Wright M.G . Carnes (1987) ArticleTitleStrain and cultivar specificity in the Agrobacterium-soybean interaction Plant Cell Tiss. Org. Cult. 8 3–15 Occurrence Handle10.1007/BF00040728 Occurrence Handle1:CAS:528:DyaL2sXhs12rurs%3D

    Article  CAS  Google Scholar 

  • M.-T. Chan T.-M. Lee H.-H. Chang (1992) ArticleTitleTransformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefactiens Plant Cell Physiol. 33 577–593 Occurrence Handle1:CAS:528:DyaK38XlvVygt70%3D

    CAS  Google Scholar 

  • P. Christou (1997) ArticleTitleRice transformation: bombardment Plant Mol. Biol. 35 197–203 Occurrence Handle10.1023/A:1005791230345 Occurrence Handle9291973 Occurrence Handle1:CAS:528:DyaK2sXlvVGgtb8%3D

    Article  PubMed  CAS  Google Scholar 

  • Kisaka H. Effendi A. Kanno T. Kameya (2000) ArticleTitleTransformation of soybean by infecting embryonic calli with Agrobacterium tumefaciensthat of soybean and kidney bean by injecting the bacteria into germinating seeds Plant Biotechnol. 17 187–194

    Google Scholar 

  • J.J. Finer K.R. Finer E.R. Santarem (1996) Plant cell transformation, physical methods for R.A. Meyers (Eds) Encyclopedia of Molecular Biology and Molecular Medicine VCH Publishers Weinheim, Germany 458–465

    Google Scholar 

  • G. Hansen R.D. Shillito M-D. Chilton (1997) ArticleTitleT-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes Proc. Natl. Acad. Sci. USA 94 11726–11730 Occurrence Handle9326678 Occurrence Handle1:CAS:528:DyaK2sXmslemsbs%3D

    PubMed  CAS  Google Scholar 

  • M. Holsters D. Waele Particlede A. Depicker E. Messens M. Montagu ParticleVan J. Schell (1978) ArticleTitleTransfection and transformation of Agrobacterium tumefaciens Mol. Gen. Genet. 163 181–187 Occurrence Handle355847 Occurrence Handle1:CAS:528:DyaE1cXltVemtbw%3D

    PubMed  CAS  Google Scholar 

  • J.M. Humara M. López R.J. Ordás (1999) ArticleTitleAgrobacterium tumefaciens-mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer Plant Cell Rep. 19 51–58 Occurrence Handle10.1007/s002990050709 Occurrence Handle1:CAS:528:DC%2BD3cXjsVehsr8%3D

    Article  CAS  Google Scholar 

  • J. Ke R. Khan T. Johnson (2001) ArticleTitleHigh-efficiency gene transfer to recalcitrant plants by Agrobacterium tumefaciens Plant Cell Rep. 20 150–156 Occurrence Handle1:CAS:528:DC%2BD3MXhtVGgsrY%3D

    CAS  Google Scholar 

  • C. Koncz K. Ne’meth G.P. Re’dei J. Schell (1994) NoChapterTitle J. Paszkowski (Eds) Homologous Recombination and Gene Silencing in Plants Kluwer Dordrecht, The Netherlands 167–189

    Google Scholar 

  • Z. Liu Y. Goto I. Nishiyama M. Kokubun (2001) ArticleTitleEffects of foliar and root-applied benzylaminopurine on tillering of rice plants grown in hydroponics Plant Prod. Sci. 4 220–226 Occurrence Handle1:CAS:528:DC%2BD3MXntVKru7o%3D Occurrence Handle10.1626/pps.4.220

    Article  CAS  Google Scholar 

  • C.A. Meurer R.D. Dinkins G.B. Collins (1998) ArticleTitleFactors affecting soybean cotyledonary node transformation Plant Cell Rep. 18 180–186 Occurrence Handle10.1007/s002990050553 Occurrence Handle1:CAS:528:DyaK1MXitVajs7g%3D

    Article  CAS  Google Scholar 

  • M.G. Murray W.F. Thompson (1980) ArticleTitleRapid isolation of high molecular weight plant DNA Nucl. Acid. Res. 8 4321–4325 Occurrence Handle1:CAS:528:DyaL3cXmtVSmtL8%3D

    CAS  Google Scholar 

  • Y. Nishizawa N. Kishimoto A. Saito T. Hibi (1993) ArticleTitleSequence variation, differential expression and chromosomal location of rice chitinase genes Mol. Gen. Genet. 241 1–10 Occurrence Handle10.1007/BF00280194 Occurrence Handle7901749 Occurrence Handle1:CAS:528:DyaK2cXitlOgsb4%3D

    Article  PubMed  CAS  Google Scholar 

  • L.D. Owens D.E. Cress (1985) ArticleTitleGenotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids Plant Physiol. 77 87–94 Occurrence Handle1:CAS:528:DyaL2MXptlWgtA%3D%3D Occurrence Handle10.1104/pp.77.1.87 Occurrence Handle16664035

    Article  CAS  PubMed  Google Scholar 

  • J.S. Rohila R.K. Jain R. Wu (2002) ArticleTitleGenetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA Plant Sci. 163 525–532 Occurrence Handle10.1016/S0168-9452(02)00155-3 Occurrence Handle1:CAS:528:DC%2BD38XntVejtb8%3D

    Article  CAS  Google Scholar 

  • J. Sambrook E.F. Fritsch T. Maniatis (1989) Molecular Cloning: A Laboratory Manual EditionNumber2 Cold Spring Harbor Laboratory Cold Spring Harbor, New York 1–808

    Google Scholar 

  • E.R. Santarém H.N. Trick J.S. Essig J.J. Finer (1998) ArticleTitleSonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression Plant Cell Rep. 17 752–759

    Google Scholar 

  • E. Sivamani A. Bahieldin J.M. Wraith T. Al-Niemi W.E. Dyer T.-H.D. Ho R. Qu (2000) ArticleTitleImproved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene Plant Sci. 155 1–9 Occurrence Handle10.1016/S0168-9452(99)00247-2 Occurrence Handle10773334 Occurrence Handle1:CAS:528:DC%2BD3cXisFGnu7c%3D

    Article  PubMed  CAS  Google Scholar 

  • S. Tingay D. McElroy R. Kalla S. Fieg M. Wang S. Thornton R. Bretell (1997) ArticleTitle Agrobacterium tumefaciens-mediated barley transformation Plant J. 11 1369–1376 Occurrence Handle10.1046/j.1365-313X.1997.11061369.x Occurrence Handle1:CAS:528:DyaK2sXkslajurw%3D

    Article  CAS  Google Scholar 

  • H.N. Trick J.J. Finer (1997) ArticleTitleSAAT: sonication-assisted Agrobacterium-mediated transformation Transgen. Res. 6 329–337 Occurrence Handle1:CAS:528:DyaK2sXmsFaisL0%3D

    CAS  Google Scholar 

  • H.N. Trick J.J. Finer (1998) ArticleTitleSonication-assisted Agrobacterium-mediated transformation of soybean (Glycine max [L.] Merrill) embryogenic suspension culture tissue Plant Cell Rep. 17 482–488 Occurrence Handle10.1007/s002990050429 Occurrence Handle1:CAS:528:DyaK1cXisFWkt7o%3D

    Article  CAS  Google Scholar 

  • C.M. Vicient G. Hull J. Guilleminot M. Devic M. Delseny (2000) ArticleTitleDifferential expression of the Arabidopsis genes coding for Em-like proteins J. Exp. Bot. 51 1211–1220 Occurrence Handle10937696 Occurrence Handle1:CAS:528:DC%2BD3cXlsVyjt7c%3D

    PubMed  CAS  Google Scholar 

  • K. Wakui Y. Takahata (2002) ArticleTitleIsolation and expression of Lea gene in desiccation-tolerant microspore-derived embryos in Brassica spp Physiol. Plant 116 223–230 Occurrence Handle10.1034/j.1399-3054.2002.1160212.x Occurrence Handle12354199 Occurrence Handle1:CAS:528:DC%2BD38XnslSktbg%3D

    Article  PubMed  CAS  Google Scholar 

  • Wise M.J. 2003. LEAping to conclusions: a computational reanalysis of late embyogenesis abundant proteins and their possible roles. BMC Bioinformatics. 4: 52. [].

  • D. Xu X. Duan B. Wang B. Hong T.-H.D. Ho R. Wu (1996) ArticleTitleExpression of a late embryogenesis abundant protein geneHVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice Plant Physiol. 110 249–257 Occurrence Handle12226181 Occurrence Handle1:CAS:528:DyaK28XltFGltw%3D%3D

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zaochang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Park, BJ., Kanno, A. et al. The Novel Use of a Combination of Sonication and Vacuum Infiltration in Agrobacterium-mediated Transformation of Kidney Bean (Phaseolus vulgaris L.) with lea Gene. Mol Breeding 16, 189–197 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: