Molecular Breeding

, Volume 16, Issue 1, pp 67–78 | Cite as

Genetic and Economic Analysis of a Targeted Marker-assisted Wheat Breeding Strategy

  • Haydn Kuchel
  • Guoyou Ye
  • Rebecca Fox
  • Stephen Jefferies


The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.


Economics Marker-assisted selection Plant breeding Simulation Triticum aestivum 



Australian Grain Technologies Pty Ltd


Doubled haploid


Environment type


High molecular weight


Marker-assisted selection


Target population of environments


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, M. 2000Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markersTheor. Appl. Genet101892896CrossRefGoogle Scholar
  2. Allard, R.W. 1960Principles of Plant BreedingWiley and SonsLondonGoogle Scholar
  3. Bariana, H.S., McIntosh, R.A. 1993Cytogenetic studies in wheat XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2AGenome36476482Google Scholar
  4. Charmet, G., Robert, N., Perretant, M.R., Gay, G., Sourdille, P., Groos, C., Bernard, S., Bernard, M. 1999Marker-assisted recurrent selection for cumulating additive and interactive QTLs in recombinant inbred linesTheor. Appl. Genet9911431148CrossRefGoogle Scholar
  5. Devos, K.M., Bryan, G.J., Collins, A.J., Stephenson, P., Gale, M.D. 1995Application of two microsatellite sequences in wheat storage proteins as molecular markersTheor. Appl. Genet90247252CrossRefGoogle Scholar
  6. Dreher, K., Khairallah, M., Ribaut, J., Morris, M. 2003Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYTMol. Breed11221234CrossRefGoogle Scholar
  7. Eagles, H.A., Hollamby, G.J., Gororo, N.N., Eastwood, R.F. 2002Estimation and utilisation of glutenin gene effects from the analysis of unbalanced data from wheat breeding programsAust. J. Agric. Res53367377CrossRefGoogle Scholar
  8. Ellis, M.H., Speilmeyer, W., Gale, K.R., Rebetzke, G.J., Richards, R.A. 2002“Perfect” markers for the Rht-B1bRht-D1b dwarfing genes in wheatTheor. Appl. Genet10510381042CrossRefPubMedGoogle Scholar
  9. Hollamby, G.J., Bayraktar, A., Wilson, R.E. 1983An effective breeding procedure for improving yieldadaptation, disease resistance and quality in wheat for AustraliaProc. 6th Int. Wheat Genet. Symp111631169Google Scholar
  10. Hospital, F., Moreau, L., Lacourdre, F., Charcosset, A., Gallais, A. 1997More on the efficiency of marker-assisted selectionTheor. Appl. Genet9511811189CrossRefGoogle Scholar
  11. Howes, N.K., Woods, S.M., Townley-Smith, T.F. 1998Simulations and practical problems of applying multiple marker assisted selection and doubled haploids to wheat breeding programsEuphytica100225230CrossRefGoogle Scholar
  12. Jefferies, S.P., King, B.J., Barr, A.R., Warner, P., Logue, S.J., Langridge, P. 2003Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barleyPlant Breed1225256CrossRefGoogle Scholar
  13. Jefferies, S.P., Pallota, M.A., Paull, J.G., Karakousis, A., Kretschmer, J.M., Manning, S., Islam, A.K.M.P., Langridge, P., Chalmers, K.J. 2000Mapping and validation of chromosome regions conferring boron toxicity in wheat (Triticumaestivum)Theor. Appl. Genet101767777CrossRefGoogle Scholar
  14. Knapp, S.J. 1998Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypesCrop Sci3811641174Google Scholar
  15. Koebner, R.M.D., Summers, W. 200321st Century wheat breeding: plot selection or plate detection?Trends Biotechnol215963CrossRefPubMedGoogle Scholar
  16. Korzun, V., Roder, M.S., Ganal, M.W., Worland, A.J., Law, C.N. 1998Genetic analysis of the dwarfing gene (Rht8) in wheat. Part 1. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticumaestivum L.)Theor. Appl. Genet9611041109CrossRefGoogle Scholar
  17. McIntosh, R.A. 1992Pre-emptive breeding to control wheat rustsEuphytica63106113CrossRefGoogle Scholar
  18. McIntosh, R.A., Yamazaki, Y., Devos, K.M., Dubcovsky, J., Rogers, W.J., Appels, R. 2003Catalogue of gene symbols for wheatProc. 10th Int. Wheat Genet. Symp41829Google Scholar
  19. Moreau, L., Lamarie, S., Charcosset, A., Gallais, A. 2000Economic efficiency of one cycle of marker-assisted selectionCrop Sci40329337Google Scholar
  20. Morris, M., Dreher, K., Ribaut, J., Khairallah, M. 2003Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selectionMol. Breed11235247CrossRefGoogle Scholar
  21. Ogbonnaya, F.C., Subrahmanyam, N.C., Moullet, O., de Majnik, J., Eagles, H.A., Brown, L.S., Eastwood, R.F., Kollmorgen, J., Appels, R., Lagudah, E.S. 2001Diagnostic DNA markers for cereal cyst nematode resistance in bread wheatAust. J. Agric. Res5213671374CrossRefGoogle Scholar
  22. Payne, P.I., Nightingale, M.A., Krattiger, A.F., Holt, L.M. 1987The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varietiesJ. Sci. Food Agric405165Google Scholar
  23. Podlich, D.W., Cooper, M. 1998QU-GENE: a simulation platform for quantitative analysis of genetic modelsBioinformatics14632653CrossRefPubMedGoogle Scholar
  24. Radovanovic, N., Cloutier, S. 2003Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programsMol. Breed125159CrossRefGoogle Scholar
  25. Suenaga, K., Singh, R.P., Huerta-Espino, J., William, H.M. 2003Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheatPhytopathology93881890Google Scholar
  26. Wang, J., van Ginkel, M., Podlich, D., Ye, G., Trethowan, R., Pfeiffer, W., DeLacy, I.H., Cooper, M., Rajaram, S. 2003Comparison of two breeding strategies by computer simulationCrop Sci4317641773Google Scholar
  27. Williams, K.J., Lewis, J.G., Bogacki, P., Pallota, M.A., Willsmore, K.J., Kuchel, H., Wallwork, H. 2003Mapping of a QTL contributing to cereal cyst nematode tolerance and resistance in wheatAust. J. Agric. Res54731737CrossRefGoogle Scholar
  28. Yousef, G.G., Juvik, J.A. 2001Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet cornCrop Sci41645655Google Scholar
  29. Yu, K., Park, S.J., Poysa, V. 2000Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economicsPlant Breed119411415CrossRefGoogle Scholar
  30. Zhou, W.-C., Kolb, F.L., Bai, G.-H., Dolmier, L.L., Boze, L.K., Smith, N.J. 2003Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheatPlant Breed1224046CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Haydn Kuchel
    • 1
    • 2
    • 3
  • Guoyou Ye
    • 3
    • 4
  • Rebecca Fox
    • 2
  • Stephen Jefferies
    • 1
    • 2
    • 3
  1. 1.Australian Grain TechnologiesRoseworthyAustralia
  2. 2.School of Agriculture and WineUniversity of AdelaideGlen OsmondAustralia
  3. 3.Molecular Plant Breeding Cooperative Research CentreUniversity of AdelaideGlen OsmondAustralia
  4. 4.School of Land and Food SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations