Skip to main content
Log in

QTL Analysis in Recombinant Chromosome Substitution Lines and Doubled Haploid Lines Derived from a Cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum

  • Published:
Molecular Breeding Aims and scope Submit manuscript


Recombinant chromosome substitution lines (RCSLs) were developed in BC3 generation to introduce segments of a wild barley strain ‘H602’ (Hordeum vulgare ssp. spontaneum) into a barley cultivar ‘Haruna Nijo’ (H. vulgare ssp. vulgare) genetic background. One hundred thirty four RCSLs were genotyped by 25 SSR and 60 EST markers, which were localized on a linkage map of doubled haploid lines (DHLs) derived from the same cross combination. Graphical genotyping revealed that the observed average substitution ratio of H602 segment (12.9%) agreed with the expected substitution ratio (12.5%), and a minimum set of 19 RCSLs represented the entire H602 genome. Phenotypes of five qualitative and nine quantitative traits were scored in both the RCSLs and DHLs. Five qualitative traits were localized as morphological markers on the linkage map of the DHLs, and these molecular markers were aligned on the respective chromosomal regions in the RCSLs. Simple and composite interval mapping procedures detected a total of 18 and 24 QTLs for nine qualitative traits on the RCSLs and DHLs, respectively. Several QTLs were localized at coincident or very close regions on both linkage maps. In spite of general inferior agronomic performances in wild barley, several H602 QTL alleles showed agronomically positive effects. These RCSLs should contribute to substitution of favorable alleles from wild barley into cultivated barley. These RCSLs are also available as sources of near isogenic lines, with which we can apply advanced genetic analysis methods such as isolation of QTLs and detection of epistatic interactions among QTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others



advanced backcross QTL


doubled haploid lines


expressed sequence tag


near isogenic lines


recombinant chromosome substitution lines


quantitative trait locus


simple sequence repeat


  1. Basten C.J., Weir B.S. and Zeng Z.B. 1994. Zmap-a QTL cartgrapher. In: Smith C., Gavora J.S., Benkel B., Chesnais J., Fairfull W., Gibson J.P., Kennedy B.W. and Burnside E.B.(Eds), The 5th World Congress on Genetic Applied to Livestock Production: Computing Strategies and Software. Vol.22. The Organizing Committee5th World Congress on Genetics Applied to Livestock Production, OntarioCanadapp. 65–66 (

  2. R. Bothmer K. Sato T. Komatsuda S. Yasuda G. Fischbeck (2003) The domestication of cultivated barley R. Bothmer T. Hintum H. Knüpffer K. Sato (Eds) Diversity in Barley (Hordeum vulgare) Elsevier Science B.V AmsterdamNetherlands 9–27

    Google Scholar 

  3. J.M. Costa A. Corey P.M. Hayes C. Jobet A. Kleinhofs A. Kopisch-Obusch S.F. Kramer D. Kudrna M. Li O. Riera-Lizarazu K. Sato P. Szucs T. Toojinda M.I. Vvales R.I. Wolfe (2001) ArticleTitleMolecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population Theor. Appl. Genet. 103 415–424 Occurrence Handle10.1007/s001220100622 Occurrence Handle1:CAS:528:DC%2BD3MXmvVeksbs%3D

    Article  CAS  Google Scholar 

  4. A. Frary T.C. Nesbitt A. Frary S. Grandillo E. van der Kneep B. Cong J. Liu J. Meller R. Elber K.B. Alpert S.D. Tanksley (2000) ArticleTitlefw2.2: a quantitative trait locus key to the evolution of tomato fruit size Science 289 85–88 Occurrence Handle10.1126/science.289.5476.85 Occurrence Handle10884229 Occurrence Handle1:CAS:528:DC%2BD3cXlt1enu7o%3D

    Article  PubMed  CAS  Google Scholar 

  5. T.M. Fulton S. Grandillo T. Beck-Bunn E. Fridman A. Frampton J. Lopez V. Petiard J. Uhlig D. Zamir S.D. Tanksley (2000) ArticleTitleAdvanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross Theor. Appl. Genet. 100 1025–1042 Occurrence Handle10.1007/s001220051384 Occurrence Handle1:CAS:528:DC%2BD3cXls1ais74%3D

    Article  CAS  Google Scholar 

  6. P.M. Hayes T.K. Blake T.H.H. Chen S. Tragoonrung F. Chen A. Pan B. Liu (1993a) ArticleTitleQuantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winter hardiness Genome 36 66–71

    Google Scholar 

  7. P.M. Hayes B.H. Liu S.J. Knapp F. Chen B. Jones T. Blake J. Franckowiak D. Rasmusson M. Sorrells S.E. Ullrich D. Wesenberg A. Kleinhofs (1993b) ArticleTitleQuantitative trait locus effects and environmental interaction in a sample of North American barley germplasm Theor. Appl. Genet. 87 392–401 Occurrence Handle10.1007/BF01184929

    Article  Google Scholar 

  8. J.C. Ho S.R. McCouch M.E. Smith (2002) ArticleTitleImprovement of hybrid yield by advanced backcross QTL analysis in elite maize Theor. Appl. Genet. 105 440–448 Occurrence Handle12582549 Occurrence Handle1:CAS:528:DC%2BD38Xntlejs7k%3D

    PubMed  CAS  Google Scholar 

  9. K. Hori T. Kobayashi A. Shimizu K. Sato K. Takeda S. Kawasaki (2003) ArticleTitleEfficient construction of high-density linkage map and its application to QTL analysis in barley Theor. Appl. Genet. 107 806–813 Occurrence Handle10.1007/s00122-003-1342-9 Occurrence Handle12838391 Occurrence Handle1:CAS:528:DC%2BD3sXmvFantLg%3D

    Article  PubMed  CAS  Google Scholar 

  10. X.Q. Huang H. Cöster M.W. Ganal M.S. Röder (2003) ArticleTitleAdvanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.) Theor. Appl. Genet. 106 1379–1389 Occurrence Handle12750781 Occurrence Handle1:CAS:528:DC%2BD3sXjslamsrw%3D

    PubMed  CAS  Google Scholar 

  11. I. Karsai K. Mészáros P. Szücs P.M. Hayes L. Láng Z. Bedö (1999) ArticleTitleEffects of loci deTermining photoperiod sensitivity (Phd-H1) and vernalization response (Sh2) on agronomic traits in the ‘Dicktoo’ × ‘Morex’ barley mapping population Plant Breed. 118 399–403 Occurrence Handle10.1046/j.1439-0523.1999.00408.x

    Article  Google Scholar 

  12. D.D. Kosambi (1944) ArticleTitleThe estimation of map distance from recombination values Ann. Eugen. 12 172–175

    Google Scholar 

  13. T. Kubo Y. Aida K. Nakamura H. Tsunematsu K. Doi A. Yoshimura (2002) ArticleTitleReciprocal chromosome segment substitution series derived from japonica and indisa cross of rice (Oryza sativa L.) Breed. Sci. 52 319–325 Occurrence Handle10.1270/jsbbs.52.319 Occurrence Handle1:CAS:528:DC%2BD3sXht1Wku70%3D

    Article  CAS  Google Scholar 

  14. E.S. Lander D. Botstein (1989) ArticleTitleMapping Mendelian factors underlying quantitative trait using RFLP linkage maps Genetics 121 185–199 Occurrence Handle2563713 Occurrence Handle1:STN:280:BiaC3sjpsVw%3D

    PubMed  CAS  Google Scholar 

  15. L.A. Marquez-Cedillo P.M. Hayes B.L. Jones A. Kleinhofs W.G. Legge B.G. Rossnagel K. Sato S.E. Ullrich D.M. Wesenberg InstitutionalAuthorNamethe North American Barley Genome Mapping Project (2001) ArticleTitleQTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups Theor. Appl. Genet. 103 625–637 Occurrence Handle1:CAS:528:DC%2BD3MXot1GmtLw%3D

    CAS  Google Scholar 

  16. I. Matus A. Corey T. Filichkin P.M. Hayes M.I. Vales J. Kling O. Riera-Lizarazu K. Sato W. Powell R. Waugh (2003) ArticleTitleDevelopment and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a resource of donor alleles in a Hordeum vulgare subsp. vulgare background Genome 46 1010–1023 Occurrence Handle10.1139/g03-080 Occurrence Handle14663520 Occurrence Handle1:CAS:528:DC%2BD2cXnt1Gktg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  17. E. Nevo (1992) Origin, evolution, population genetics and resources for breeding of wild barley Hordeum spontaneum in the Fertile Crescent P.R. Shewry (Eds) Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology CAB International WallingfordUK 19–43

    Google Scholar 

  18. M.A. Pallotta R.D. Graham P. Langridge D.H.B. Sparrow S.J. Barker (2000) ArticleTitleRFLP mapping of manganese efficiency in barley Theor. Appl. Genet. 101 1100–1108 Occurrence Handle10.1007/s001220051585 Occurrence Handle1:CAS:528:DC%2BD3cXovVaks7o%3D

    Article  CAS  Google Scholar 

  19. K. Pillen A. Zacharias J. Léon (2003) ArticleTitleAdvanced backcross QTL analysis in barley (Hordeum vulgare L.) Theor. Appl. Genet. 107 340–352 Occurrence Handle10.1007/s00122-003-1253-9 Occurrence Handle12677407 Occurrence Handle1:CAS:528:DC%2BD3sXlt1Whu78%3D

    Article  PubMed  CAS  Google Scholar 

  20. K. Pillen A. Zacharias J. Léon (2004) ArticleTitleComparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum Theor. Appl. Genet. 108 1591–1601 Occurrence Handle10.1007/s00122-004-1586-z Occurrence Handle14968306 Occurrence Handle1:CAS:528:DC%2BD2cXjvFKnsbs%3D

    Article  PubMed  CAS  Google Scholar 

  21. L. Ramsay M. Macaulay S. degli Ivanissevich K. MacLean L. Cardle J. Fuller K.J. Edwards S. Tuvesson M. Morgante A. Massari E. Maestri N. Marmiroli T. Sjakste M. Ganal W. Powell R. Waugh (2000) ArticleTitleA simple sequence repeat-based linkage map of barley Genetics 156 1997–2005 Occurrence Handle11102390 Occurrence Handle1:CAS:528:DC%2BD3MXjsFGgug%3D%3D

    PubMed  CAS  Google Scholar 

  22. K. Sato N. Nankaku Y. Motoi K. Takeda (2004) A large scale mapping of ESTs on barley genome J. Spunar J. Janikova (Eds) Proc. 9th International Barley Genetics Symposium Brno Czech Republic 79–85

    Google Scholar 

  23. E.M. Septiningsih J. Prasetiyono E. Lubis T.H. Tai T. Tjubaryat S. Moeljopawiro S.R. McCouch (2003) ArticleTitleIdentification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O.␣rufipogon Theor. Appl. Genet. 107 1419–1432 Occurrence Handle14513215 Occurrence Handle1:STN:280:DC%2BD3srkt1GitA%3D%3D

    PubMed  CAS  Google Scholar 

  24. S.D. Tanksley J.C. Nelson (1996) ArticleTitleAdvanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines Theor. Appl. Genet. 92 191–203

    Google Scholar 

  25. S.D. Tanksley S. Grandillo T.M. Fulton D. Zamir Y. Eshed V. Petiard J. Lopez T. Beck-Bunn (1996) ArticleTitleAdvanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium Theor. Appl. Genet. 92 213–224 Occurrence Handle1:CAS:528:DyaK28XltFOjsLs%3D

    CAS  Google Scholar 

  26. S.D. Tanksley S.R. McCouch (1997) ArticleTitleSeed banks and molecular maps: unlocking genetic potential from the wild Science 277 1063–1066 Occurrence Handle10.1126/science.277.5329.1063 Occurrence Handle9262467 Occurrence Handle1:CAS:528:DyaK2sXlsFSisrw%3D

    Article  PubMed  CAS  Google Scholar 

  27. B. Teulat O. Merah I. Souyris D. This (2001) ArticleTitleQTLs for agronomic traits from a Mediterranean barley progeny grown in several environments Theor. Appl. Genet. 103 774–787 Occurrence Handle1:CAS:528:DC%2BD3MXpt1Wksbc%3D

    CAS  Google Scholar 

  28. Y. Ukai (2003) Plant Breeding Univ. of Tokyo Press TokyoJapan 2–26

    Google Scholar 

  29. S.E. Ullrich P.M. Hayes W.E. Dyer T.K. Blake J.A. Clancy (1993) Quantitative trait locus analysis of seed dormancy in “Steptoe” barley M.K. Walker-Simmons J.L. Reid (Eds) Proc. 6th Int. Symp. Pre-harvest Sprouting Cereals Am. Assoc. Cereal Chemist St. Paul. Minn 136–144

    Google Scholar 

  30. M. von Korff H. Wang J. Léon K. Pillen (2004) ArticleTitleDevelopment of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor Theor. Appl. Genet. 109 1736–1745 Occurrence Handle15502912 Occurrence Handle1:STN:280:DC%2BD2crotVeksg%3D%3D

    PubMed  CAS  Google Scholar 

  31. M. Yano Y. Katayose M. Ashikari U. Yamanouchi L. Monna T. Fuse T. Baba K. Yamamoto Y. Umehara Y. Nagamura T. Sasaki (2000) ArticleTitleHd1, a major photoperiod sensitivity quantitative trait locus in riceis closely related to the Arabidopsis flowering time gene CONSTANS Plant Cell 12 2473–2483 Occurrence Handle10.1105/tpc.12.12.2473 Occurrence Handle11148291 Occurrence Handle1:CAS:528:DC%2BD3MXns1SgsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  32. D. Zamir (2001) ArticleTitleImproving plant breeding with exotic genetic libraries Nat. Rev. Genet. 2 983–989 Occurrence Handle10.1038/35103589 Occurrence Handle11733751 Occurrence Handle1:CAS:528:DC%2BD38Xmt1WgsrY%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kazuhiro Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hori, K., Sato, K., Nankaku, N. et al. QTL Analysis in Recombinant Chromosome Substitution Lines and Doubled Haploid Lines Derived from a Cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Mol Breeding 16, 295–311 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: