Skip to main content

Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers

Abstract

Synthetic hexaploid wheats (SHWs) and synthetic backcross-derived lines (SBLs) obtained from them are novel sources of useful traits for broadening the diversity in breeding germplasm of hexaploid bread wheat (Triticum aestivum). Fifty-one EST-derived and 39 genomic-derived microsatellite markers (SSRs) covering the A, B, and D genomes were used to assess the genetic diversity present in 11 SHWs, their backcross derived families, and their durum and bread wheat parents and to test for the selective advantage of SHW alleles in SBL families after several generations of selection. The 90 SSR markers amplified 91 loci with 474 alleles across all genotypes. In many of the SHWs, novel alleles were observed which were stably inherited in the SBL families. Gene diversity, the average number of alleles per locus, cluster analysis, and principal coordinate analysis revealed a high level of genetic diversity in the Aegilops tauschii and durum parents of the SHWs, and also in the SBLs. In the latter, alleles from the SHW parent had a selective advantage for six SSR markers. This indicates that SHWs and SBLs are a valuable resource for broadening the genetic base of elite wheat breeding germplasm. Fingerprinting of SBLs and their corresponding SHW and bread wheat parents, and testing for selective advantage of SHWs alleles promises to be a useful method for detecting chromosomal regions of interest for bread wheat improvement.

This is a preview of subscription content, access via your institution.

References

  1. M.J. Christiansen S.B. Anderson R. Ortiz (2002) ArticleTitleDiversity changes in an intensively bread wheat germplasm during the 20th century Mol. Breed. 9 1–11

    Google Scholar 

  2. I.A. Del Blanco S. Rajaram W.E. Kronstad M.P. Reynolds (2000) ArticleTitlePhysiological performance of synthetic hexaploid wheatderived populations Crop Sci. 40 1257–1263

    Google Scholar 

  3. I.A. Del Blanco S. Rajaram W.E. Kronstad (2001) ArticleTitleAgronomic potential of synthetic hexaploid wheat-derived populations Crop Sci 41 670–676

    Google Scholar 

  4. K.M. Devos G.J. Bryan P. Stephenson M.D. Gale (1995) ArticleTitleApplication of two microsatellite sequences in wheat storage proteins as molecular markers Theor. Appl. Genet. 90 247–252

    Google Scholar 

  5. M. Diaby M.D. Casler (2003) ArticleTitleRAPD marker variation among smooth bromegrass cultivars Crop Sci. 43 1538–1547

    Google Scholar 

  6. S. Dreisigacker P. Zhang M.L. Warburton M. Ginkel Particlevan D. Hoisington M. Bohn A.E. Melchinger (2004) ArticleTitleSSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different mega-environments Crop Sci. 44 381–388

    Google Scholar 

  7. Dufner J., Jensen U. and Schumacher E. 2002. Statistik mit SAS. B.G. Teubner, Stuttgart, Germany, pp. 212.

  8. J. Dvorak M.C. Luo Z.L. Yang H.B. Zhang (1998) ArticleTitleThe structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat Theor. Appl. Genet. 97 657–670

    Google Scholar 

  9. I. Eujayl M. Sorrells M. Baum P Wolters W. Powell (2002) ArticleTitleIsolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat Theor. Appl. Genet. 104 399–407

    Google Scholar 

  10. I. Eujayl M. Sorrells M. Baum P Wolters W. Powell (2002) ArticleTitleIsolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat Theor. Appl. Genet. 104 399–407

    Google Scholar 

  11. M.M. Frisch M. Bohn A.E. Melchinger (2000) ArticleTitlePlabsim: Software for simulation of marker-assisted backcrossing J. of Heredity 91 86–87

    Google Scholar 

  12. N.N. Gororo H.A. Eagles R.F. Eastwood M.E. Nicolas R.G. Flood (2002) ArticleTitleUse of Triticum tauschii to improve yield of wheat in low-yielding environments Euphytica 123 IssueID2 241–254 Occurrence Handle10.1023/A:1014910000128

    Article  Google Scholar 

  13. J.C. Gower (1966) ArticleTitleSome distance properties of latent root and in multivariate analysis Biometricka 53 325–388

    Google Scholar 

  14. M. Heckenberg A.E. Melchinger J.S. Ziegle L.K. Joe J.D. Hauser M. Hutton M. Bohn (2002) ArticleTitleVariation of DNA fingerprints among accessions within maize inbred lines with regard to the identification of essentially derived varieties. I. Genetic and technical sources of variation in SSR data Mol. Breed. 10 181–191

    Google Scholar 

  15. D. Hoisington M. Khairallah T. Reeves J.M. Ribaut B. Skovmand S. Taba M. Warburton (1999) ArticleTitlePlant genetic resources: what can they contribute toward increased crop productivity?Proc Natl. Acid. Sci. USA 96 5937–5943

    Google Scholar 

  16. R. Ihaka R. Gentleman (1996) ArticleTitleA language for data analysis and graphics J. of Computational and Graphical Statistics 5 299–314

    Google Scholar 

  17. G.H.J. Kema W. Lange C.H. Silfhout (1995) ArticleTitleDifferential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa Phytopathology 85 425–429

    Google Scholar 

  18. Lage J., Skovmand B. and Andersen S.B. 2001. Field evaluation of Russian wheat aphid (Homoptera: Aphididae) resistance in Triticum dicoccum derived synthetic hexaploid wheats. Abstract, Annual meeting, ESA, San Diego, USA, December 2001.

  19. J. Lage B. Skovmand S.B. Andersen (2002) ArticleTitleExpression and suppression of resistance to greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum x Aegilops tauschii crosses J. of Economic Entomology 96 202–206

    Google Scholar 

  20. T. Lelley M. Stachel H. Grausgruber J. Vollmann (2000) ArticleTitleAnalysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites Genome 43 661–668

    Google Scholar 

  21. B. Liu J.M. Vega G. Segal S. Abbo M. Rodova M. Feldman (1998a) ArticleTitleRapid genomic changes in newly synthesized polyploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences Genome 41 272–277

    Google Scholar 

  22. B. Liu J.M. Vega M. Feldman (1998) ArticleTitleRapid genomic changes in newly synthesized polyploids of Triticum and Aegilops. II.Changes in low-copy coding DNA sequences Genome 41 535–542

    Google Scholar 

  23. H. Ma R.P. Singh A. Mujeeb-Kazi (1995) ArticleTitleResistance to stripe rust in Triticum turgidum, A. tauschii and their synthetic hexaploids Euphytica 82 117–124

    Google Scholar 

  24. A. Mujeeb-Kazi V. Rosas S. Roldan (1996) ArticleTitleConservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. x A. tauschii; 2n = 6x =42, AABBDD) and its potential utilization for wheat improvement Genet. Res. Crop. Evol. 43 129–134

    Google Scholar 

  25. A. Mujeeb-Kazi G. Fuentes-Davila R.L. Villareal A. Cortes V. Roasas R. Delgado (2001a) ArticleTitleRegistration of 10 synthetic hexaploid wheat and six bread wheat germplasms resistant to karnal bunt Crop Sci. 41 1652–1653

    Google Scholar 

  26. A. Mujeeb-Kazi L.I. Gilchrist R.L. Villareal R. Delgado (2001b) ArticleTitleRegistration of ten wheat germplasms resistant to Septoria tritici leaf blotch Crop Sci 40 590–591

    Google Scholar 

  27. M. Nei (1987) Molecular evolutionary genetics Columbia University Press New York, USA 164

    Google Scholar 

  28. M. Nei (1987) Molecular evolutionary genetics Columbia University Press New York, USA 164

    Google Scholar 

  29. E. Pestsova V. Korzun N.P. Goncharov K. Hammer M.W. Ganal M.S. RÖ (2000) ArticleTitleMicrosatellite analysis of Aegilops tauschii germplasm Theor. Appl. Genet. 101 100–106

    Google Scholar 

  30. Rajaram S. 2001. The human right to food and livelihoods: the role of global wheat research. Presented at the national seminar, building on past achievements to advance the future direction of Australian agriculture, ASTE Crawford Fund and Australian Institute of Agricultural Science and Technology, 2001, University House, Canberra, Australia.

  31. J.R. Russell R.P. Ellis W.T.B. Thomas R. Waugh J. Provan A. Booth J. Fuller P. Lawrence G. Young W. Powell (2000) ArticleTitleA retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars Mol. Breed. 6 553–568

    Google Scholar 

  32. M.A. Saghai-Maroof K. Soliman R.A. Jorgensen R.W. Allard (1984) ArticleTitleRibosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics Proc. Natl. Acad. Sci. USA 81 8014–8018

    Google Scholar 

  33. F. Salamini H. Özkan A. Brandolini R. Schäfer-Pregl W. Martin (2002) ArticleTitleGenetics and geography of wild cereal domestication in the Near East Nature Rev. Genet. 3 429–441

    Google Scholar 

  34. Sasakuma T., Ogihara Y. and Tsujimoto H. 1995. Genome rearrangement of repetitive sequence in processes of hybridization and amphiploidization in Triticinae.. In: Li Z.S. and Xin Z.Y. (eds), Proc. of the 8th Intl. Wheat Genet. Symp. Held at Beijing, China, 20-25 July 1993. China Agricultural Scientech Press, Beijing, China, pp. 563–566.

  35. E.M. Sharon S. Kresovich C.A. Jester C.J. Hernandez A.K. Szewc-McFadden (1997) ArticleTitleApplication of multiplex PCR and fluorescence-based, semi-automated allele sizing technology for genotyping plant genetic resources Crop Sci. 37 617–624

    Google Scholar 

  36. K.M. Song P. Lu K.L. Tang T.C. Osborn (1995) ArticleTitleRapid genome changes in synthetic polyploids of Brassica and its implications for polyploid evolution Proc. Natl. Acad. Sci. USA 92 7719–7723

    Google Scholar 

  37. S.D. Tanksley S.R. McCouch (1997) ArticleTitleSeed banks and molecular maps: Unblocking genetic potential from the wild Science 277 1063–1066 Occurrence Handle10.1126/science.277.5329.1063 Occurrence Handle1:CAS:528:DyaK2sXlsFSisrw%3D Occurrence Handle9262467

    Article  CAS  PubMed  Google Scholar 

  38. R.L. Villareal A. Mujeeb-Kazi E. Del Toto J. Crossa S. Rajaram (1994a) ArticleTitleAgronomic variability in selected Triticum turgidum x A. tauschii synthetic hexaploid wheats J. Agron and Crop Sci. 173 307–317

    Google Scholar 

  39. R.L. Villareal A. Mujeeb-Kazi S. Rajaram E. Del Toto (1994) ArticleTitleMorphological variability in some synthetic hexaploid wheats derived from Triticum turgidum x A. tauschii J. Genet. and Breed. 48 7–16

    Google Scholar 

  40. R.L. Villareal E. Del Toro A. Mujeeb-Kazi S. Rajaram (1995) ArticleTitleThe 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross Plant Breed. 114 497–500

    Google Scholar 

  41. R.L. Villareal K. Sayre O. Banuelos A. Mujeeb-Kazi (2001) ArticleTitleRegistration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging Crop Sci. 41 274

    Google Scholar 

  42. Wright S. 1978. Evolution and the genetics of populations. University Chicago Press, Chicago III, USA.

  43. D. Zohary J.R. Harlan A. Vardi (1969) ArticleTitleThe wild diploid progenitors of wheat and their breeding value Euphytica 18 58–65

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. L. Warburton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, P., Dreisigacker, S., Melchinger, A.E. et al. Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breeding 15, 1–10 (2005). https://doi.org/10.1007/s11032-004-1167-5

Download citation

Keywords

  • Gene diversity
  • Simple sequence repeats
  • Synthetic backcross-derived lines
  • Synthetic hexaploid wheats