Increased parasympathetic activity and ability to generate positive emotion: The influence of the BDNF Val66Met polymorphism on emotion flexibility

Abstract

Cross-species behavioral research suggests that a single nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene (rs6265, Val66Met), influences behavioral inflexibility. This SNP has not yet been linked to variability in emotion-related behaviors, despite broader evidence suggesting an association may be present. This investigation explored the role of the BDNF Val66Met polymorphism in emotion response behaviors measured during a lab-based emotional provocation. Specifically, the influence of BDNF Val66Met in emotion flexibility was explored in a sample of healthy adults (N = 120), emotion responses were recorded during the emotional provocation on multiple dimensions, in response to emotionally-evocative videos of negative then positive valence. These results suggest that Met carriers exhibit decreased parasympathetic responding, and reduced ability to generate positive emotion, relative to Val homozygotes. These findings are the first to suggest an association between the Met allele and a pattern of responding indicative of emotion inflexibility that might afford greater risk for psychopathology.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    Evidence suggests that facial coding by relatively naïve coders may be as valid as highly trained coders (e.g., Dondi et al. 2007).

  2. 2.

    Note regarding missing data for this study: pairwise deletion was utilized for missing data and resulted in deletion of data from a total of n = 27 participants according to the following. ECG data was lost for n = 21 participants due to equipment malfunction, n = 4 of these participants were also missing EDA data. EDA data was lost for an additional n = 3 participants due to equipment malfunction, and EDA data for n = 2 participants was lost due to naturally occurring skin conductance (see below footnote). Facial behavior data was lost for n = 5 research participants. For n = 4 participants, video recording was unsuccessful due to camera software malfunction, and n = 1 participant requested deletion of their video data. Two of the participants with missing facial behavior data were also dropped from ECG or EDA analyses.}

  3. 3.

    Notably, due to individual skin conductance variation within the general population, some people naturally show irregular or low skin conductance (termed “nonresponders”) (Dawson et al. 2007). When such irregularities were discovered during data collection for the present study, the research investigator attempted to adjust the electrodes and massage fingers of the participant in order to better collect the EDA data. Adjustments were unsuccessful for n = 2 participants, resulting in lack of a detectable signal.

  4. 4.

    As per Benjamini and Hochberg (1995), unadjusted p values were ranked by hypothesis. Adjusted p values were then calculated using the following formula: \(p(j) \le \alpha \left( {\frac{j}{m}} \right)\), where α = .05, j = rank, and m = 3, the total number of hypothesis tests conducted. For the first hypothesis and exploratory analysis, rank order was as follows: emotional expression (1), autonomic activity (2), and emotional experience (3).

  5. 5.

    Adjusted p values were then calculated using the following formula: \(p(j) \le \alpha \left( {\frac{j}{m}} \right)\), where α = .05, j = rank, and m = 2, the total number of hypothesis tests conducted. For the second hypothesis, rank order was as follows: emotional expression (1), emotional experience (2).

  6. 6.

    Specifically, Val homozygotes showed higher RSA in response both excluded videos, as compared to Met carriers. Val homozygotes also showed an increase in reported negative emotion expression and negative emotion experience in response to the negative emotion context (The Champ) which then decreased as the context shifted to positive emotion (Between Two Ferns). Met carriers were observed to follow a similar pattern of negative emotion expression and negative emotion experience. Val homozygotes showed a decrease in positive emotion expression as the context shifted to negative (The Champ), followed by an increase in positive emotion expression in response to the positive emotion context (Between Two Ferns). Met carriers were observed to follow a more blunted pattern of responding, with a less pronounced decrease in positive emotion expression as the context shifted to negative (The Champ). Lastly, Val homozygotes and Met carriers were also shown to follow a similar pattern of positive emotion experience.

References

  1. Aldao, A., Sheppes, G., & Gross, J. J. (2015). Emotion regulation flexibility. Cognitive Therapy and Research, 39, 263–278.

    Google Scholar 

  2. Alexander, N., Osinsky, R., Schmitz, A., Mueller, E., Kuepper, Y., & Hennig, J. (2010). The BDNF Val66Met polymorphism affects HPA-axis reactivity to acute stress. Psychoneuroendocrinology, 35(6), 949–953. https://doi.org/10.1016/j.psyneuen.2009.12.008.

    PubMed  Google Scholar 

  3. Anastasia, A., Deinhardt, K., Chao, M. V. S., Will, N. E., Irmady, K., Lee, F. S., Hempstead, B. L., & Bracken, C. (2013). Val66Met polymorphism of BDNF alters prodromal structure to induce neuronal growth cone retraction. Nature Communications, 4, 2490.

    PubMed  PubMed Central  Google Scholar 

  4. Asthana, M. K., Brunhuber, B., Mühlberger, A., Reif, A., Schneider, S., & Herrmann, M. J. (2016). Preventing the return of fear using reconsolidation update mechanisms depends on the Met-allele of the brain derived neurotrophic factor Val66Met polymorphism. The International Journal of Neuropsychopharmacology I: Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum (CINP). https://doi.org/10.1093/ijnp/pyv137.

    Article  Google Scholar 

  5. Barlow, D. H., Sauer-Zavala, S., Carl, J. R., Bullis, J. R., & Ellard, K. K. (2013). The nature, diagnosis, and treatment of neuroticism: Back to the future. Clinical Psychological Science, 2(3), 344–365.

    Google Scholar 

  6. Bath, K., Chuang, J., Spencer-Segal, J. L., Amso, D., Altemus, M., McEwen, B., & Lee, F. (2012). Variant BDNF (Val66Met) polymorphism contributes to developmental and estrous-stage-specific expression of anxiety-like behavior in female mice. Biological Psychiatry, 72(6), 499–504. https://doi.org/10.1016/j.biopsych.2012.03.032.

    PubMed  PubMed Central  Google Scholar 

  7. Beauchaine, T. P., & Thayer, J. F. (2015). Heart rate variability as a transdiagnostic biomarker of psychopathology. International Journal of Psychophysiology. https://doi.org/10.1016/j.ijpsycho.2015.08.004.

    PubMed  Article  Google Scholar 

  8. Beevers, C. G., Wells, T. T., & Mcgeary, J. E. (2009). The BDNF Val66Met polymorphism is associated with rumination in healthy adults. Emotion, 9(4), 579–584. https://doi.org/10.1037/a0016189.

    PubMed  PubMed Central  Google Scholar 

  9. Benjamini, Y., & Hochberg, Y. (1995). Controlling the False-Discovery Rate : A new and powerful approach to multiple testing. Journal of the Royal Statsitical Society B, 57, 289–300.

    Google Scholar 

  10. Benjamini, Y., & Hochberg, Y. (2000). On the adaptive control of the False Discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics, 25(1), 60–83.

    Google Scholar 

  11. Bonanno, G. A., & Burton, C. L. (2013). Regulatory flexibility: An individual differences perspective on coping and emotion regulation. Perspectives on Psychological Science, 8, 591–612.

    PubMed  Google Scholar 

  12. Bonanno, G. A., Papa, A., Lalande, K., Westpal, M., & Coifman, K. (2004). The importance of being flexible: The ability to enhance and suppress emotional expression as a predictor of long-term adjustment. Psychological Science, 15(7), 482–487.

    PubMed  Google Scholar 

  13. Bradley, M. M., Codispoti, M., Sabatinelli, D., & Lang, P. J. (2001). Emotion and motivation II: Sex differences in picture processing. Emotion, 1(3), 300–319.

    PubMed  Google Scholar 

  14. Bredemeier, K., Beevers, C. G., & McGeary, J. E. (2014). Serotonin transporter and BDNF polymorphisms interact to predict trait worry. Anxiety, Stress, & Coping, 27(6), 712–721. https://doi.org/10.1080/10615806.2014.909928.

    Google Scholar 

  15. Buss, K. A. (2011). Which fearful toddlers should we worry about? Context, fear, regulation, and anxiety risk. Developmental Psyhcology, 47(3), 804–819.

    Google Scholar 

  16. Buss, K. A., Davidson, R. J., Kalin, N. H., Goldsmith, H. H. (2004). Context-specific freezing and associated physiological reactivity as a dysregulated fear response. Developmental Psychology, 40(4), 583–594.

    PubMed  Google Scholar 

  17. Bylsma, L. M., Morris, B. H., & Rottenberg, J. (2008). A meta-analysis of emotional reactivity in major depressive disorder. Clinical Psychology Review, 28(4), 676–691. https://doi.org/10.1016/j.cpr.2007.10.001.

    PubMed  Google Scholar 

  18. Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509–527. https://doi.org/10.1176/appi.ajp.2010.09101452.

    PubMed  PubMed Central  Google Scholar 

  19. Chen, L., Lawlor, D. A., Lewis, S. J., Yuan, W., Abdollahi, M. R., Timpson, N. J., … Shugart, Y. Y. (2008). Genetic association study of BDNF in depression: Finding from two cohort studies and a meta-analysis. American Journal of Psychiatric Genetics Part B: Neuropsychiatric Genetics, 821, 814–821. https://doi.org/10.1002/ajmg.b.30686.

    Google Scholar 

  20. Chen, Z.-Y., Jing, D., Bath, K. G., Ieraci, A., Khan, T., Siao, C.-J., … Lee, F. S. (2006). Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science, 314(5796), 140–143. https://doi.org/10.1126/science.1129663.

    PubMed  PubMed Central  Google Scholar 

  21. Chhatwal, J. P., Stanek-Rattiner, L., Davis, M., & Ressler, K. J. (2006). Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nature Neuroscience, 9(7), 870–872.

    PubMed  PubMed Central  Google Scholar 

  22. Chourbaji, S., Brandwein, C., Vogt, M. A., Dormann, C., Hellweg, R., & Gass, P. (2008). Nature vs. nurture: Can enrichment rescue the behavioural phenotype of BDNF heterozygous mice? Behavioural Brain Research, 192(2), 254–258. https://doi.org/10.1016/j.bbr.2008.04.015.

    PubMed  Google Scholar 

  23. Coifman, K. G., & Almahmoud, S. Y. (2016). Emotion flexibility in psychological risk and resilience. In U. Kumar (Ed.), Handbook of resilience: A psychosocial perspective. New York: Routledge.

    Google Scholar 

  24. Coifman, K. G., & Bonanno, G. A. (2010). When distress does not become depression: Emotion context sensitivity and adjustment to bereavement. Journal of Abnormal Psychology, 119(3), 479.

    PubMed  Google Scholar 

  25. Coifman, K. G., Bonanno, G. A., Ray, R., & Gross, J. (2007). Does repression lead to recovery and resilience? Affective-autonomic response discrepancy in bereavement. Journal of Personality and Social Psychology, 92(4), 745–758.

    PubMed  Google Scholar 

  26. Colzato, L. S., Van der Does, A. J. W., Kouwenhoven, C., Elzinga, B. M., & Hommel, B. (2011). BDNF Val66Met polymorphism is associated with higher anticipatory cortisol stress response, anxiety, and alcohol consumption in healthy adults. Psychoneuroendocrinology, 36, 1562–1569.

    PubMed  Google Scholar 

  27. Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11(126), 1–8.

    Google Scholar 

  28. Da Silveira Da Luz, Dias, G. P., do Nascimento Bevilaqua, M. C., Cocks, G., Gardino, P. F., Thuret, S., & Nardi, A. E. (2013). Translational findings on brain-derived neurotrophic factor and anxiety: Contributions from basic research to clinical practice. Neuropsychobiology, 68(3), 129–138. https://doi.org/10.1159/000353269.

    Google Scholar 

  29. Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 159–181). New York: Cambridge University Press.

    Google Scholar 

  30. Dondi, M., Messinger, D., Colle, M., Tabasso, A., Simion, F., Barba, D., B., & Fogel, A. (2007). A new perspective on neonatal smiling: Differences between the judgments of expert coders and naive observers. Infancy, 12(3), 235–255. https://doi.org/10.1111/j.1532-7078.2007.tb00242.x.

    Google Scholar 

  31. Dougherty, L. R., Klein, D. N., Congdon, E., Canli, T., & Hayden, E. P. (2010). Interaction between 5-HTTLPR and BDNF Val66Met polymorphisms on HPA axis reactivity in preschoolers. Biological Psychology, 83(2), 93–100.

    PubMed  Google Scholar 

  32. Duman, R. S., Aghajanian, G. K., Sanacora, G., & Krystal, J. H. (2016). Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nature Medicine, 22(3), 238–249. https://doi.org/10.1038/nm.4050.

    PubMed  PubMed Central  Google Scholar 

  33. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., … Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257–269. https://doi.org/10.1016/S0092-8674(03)00035-7.

    PubMed  Google Scholar 

  34. Ekman, P. (1992). Are there basic emotions? Psychological Review, 99(3), 550–553.

    PubMed  Google Scholar 

  35. Fredrickson, B. L., & Levenson, R. W. (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. Cognition and Emotion, 12, 191–220.

    PubMed  PubMed Central  Google Scholar 

  36. Fredrickson, B. L., Tugade, M. M., Waugh, C. E., & Larkin, G. R. (2003). What good are positive emotions in crises? A prospective study of resilience and emotions following the terrorist attacks on the United States on 11th September, 2001. Journal of Personality and Social Psychology, 84(2), 365–376.

    PubMed  PubMed Central  Google Scholar 

  37. Friedman, B. H. (2007). An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biological Psychology, 74(2), 185–199. https://doi.org/10.1016/j.biopsycho.2005.08.009.

    PubMed  Google Scholar 

  38. Gatt, J. M., Nemeroff, C. B., Dobson-Stone, C., Paul, R. H., Bryant, R. A., Schofield, P. R., … Williams, L. M. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14(7), 681–695. https://doi.org/10.1038/mp.2008.143.

    PubMed  Google Scholar 

  39. Gaunt, T. R., Rodríguez, S., & Day, I. N. (2007). Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool ‘CubeX’. BMC Bioinformatics, 8(1), 428.

    PubMed  PubMed Central  Google Scholar 

  40. Gilman, T. L., Latsko, M., Matt, L., Flynn, J., Cabrera, OdlC., Douglas, D., Jasnow, A. M., & Coifman, K. G. (2015). Variation of 5-HTTLPR and deficits in emotion regulation: A pathway to risk? Psychology & Neuroscience, 8(3), 397.

    Google Scholar 

  41. Gilman, T. L., Shaheen, R., Nylocks, K. M., Halachoff, D., Flynn, J. J., Matt, L. M., & Coifman, K. G. (2017). A film set for the elicitation of emotion in research: A comprehensive catalogue derived from four decades of investigation. Behavior Research Methods, 49(6), 2061–2082.

    PubMed  Google Scholar 

  42. Gotlib, I. H., & Joormann, J. (2010). Cognition and depression: Current status and future directions. Annual Review of Psychology, 6, 285–312.

    Google Scholar 

  43. Graham, B. M., & Milad, M. R. (2011). The study of fear extinction: Implications for anxiety disorders. American Journal of Psychiatry, 168, 1255–1265.

    PubMed  PubMed Central  Google Scholar 

  44. Hollenstein, T. (2015). This time. It’s real: Affective flexibility, time scales, feedback loops, and the regulation of emotion. Emotion Review, 7, 308–315.

    Google Scholar 

  45. Hollenstein, T., & Lewis, M. D. (2006). A state space analysis of emotion and flexibility in parent–child interactions. Emotion, 6, 663–669.

    Google Scholar 

  46. Hollenstein, T., Lichtwarck-Aschoff, A., & Potworowski, G. (2013). A model of socioemotional flexibility at three time scales. Emotion Review, 5, 397–405.

    Google Scholar 

  47. Holtmaat, A., & Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10(9), 647–658. https://doi.org/10.1038/nrn2721.

    PubMed  Google Scholar 

  48. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748–751.

    PubMed  Google Scholar 

  49. Insel, T. R., & Cuthbert, B. N. (2009). Endophenotypes: Bridging genomic complexity and disorder heterogeneity. Biological Psychiatry, 66, 988–989.

    PubMed  Google Scholar 

  50. Johnson, D. C., & Casey, B. J. (2015). Easy to remember, difficult to forget: The development of fear regulation. Developmental Cognitive Neuroscience, 11, 42–55. https://doi.org/10.1016/j.dcn.2014.07.006.

    PubMed  Google Scholar 

  51. Joorman, J., Siemer, M., & Gotlib, I. H. (2007). Mood regulation in depression: Differential effects of distraction and recall of happy memories on sad mood. Journal of Abnormal Psychology, 116(3), 484–490.

    Google Scholar 

  52. Kashdan, T. B., & Rottenberg, J. (2010). Psychological flexibility as a fundamental aspect of health. Clinical Psychology Review, 30(7), 865–878. https://doi.org/10.1016/j.cpr.2010.03.001.

    PubMed  PubMed Central  Google Scholar 

  53. Kashdan, T. B., & Steger, M. F. (2006). Expanding the topography of social anxiety: An experience sampling assessment of positive emotions and events, and emotion suppression. Psychological Science, 17, 120–128.

    PubMed  Google Scholar 

  54. Kendall, A. D., Zinbarg, R. E., Mineka, S., Bobova, L., Prenoveau, J. M., Revelle, W., & Craske, M. G. (2015). Prospective Associations of Low positive emotionality with first onsets of depressive and anxiety disorders: Results from a 10-Wave Latent Trait-State Modeling Study. Journal of Abnormal Psychology. https://doi.org/10.1037/abn0000105.

    PubMed  PubMed Central  Article  Google Scholar 

  55. Koenen, K., Duncan, L. E., Liberson, I., & Ressler, K. (2015). From candidate genes to genome-wide association: The challenges and promise of posttraumatic stress disorder genetic studies. Biological Psychiatry, 74(9), 634–636. https://doi.org/10.1016/j.biopsych.2013.08.022.

    Google Scholar 

  56. Kok, B. E., & Fredrickson, B. L. (2010). Upward spirals of the heart: Autonomic flexibility, as indexed by vagal tone, reciprocally and prospectively predicts positive emotions and social connectedness. Biological Psychology, 85(3), 432–436.

    PubMed  PubMed Central  Google Scholar 

  57. Kovacs, M., Bylsma, L. M., Yaroslavsky, I., Rottenberg, J., George, C. J., Kiss, E., Halas, K., Benak, I., Baji, I., Vetro, A., & Kapornai, K. (2015). Positive affectivity is dampened in youths with histories of major depression and their never-depressed adolescent siblings. Clinical Psychological Science, 4(4), 661–674.

    Google Scholar 

  58. Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394–421. https://doi.org/10.1016/j.biopsycho.2010.03.010.

    PubMed  Google Scholar 

  59. Kring, A. M., & Gordon, A. H. (1998). Sex differences in emotion: Expression, experience, and physiology. Journal of Personality and Social Psychology, 74(3), 686–703.

    PubMed  Google Scholar 

  60. Latsko, M. S., Gilman, T. L., Matt, L. M., Nylocks, K. M., Coifman, K. G., Jasnow, A. M., & Hashimoto, K. (2016). A novel interaction between tryptophan hydroxylase 2 (TPH2) gene polymorphism (rs4570625) and BDNF Val66Met predicts a high-risk emotional phenotype in healthy subjects. PLOS ONE, 11(10), e0162585.

    PubMed  PubMed Central  Google Scholar 

  61. LeDoux, J. E. (1995). Emotion: Clues from the brain. Annual Review of Psychology, 46, 209–235.

    PubMed  Google Scholar 

  62. Lehto, K., Mäestu, J., Kiive, E., Veidebaum, T., & Harro, J. (2016). BDNF Val66Met genotype and neuroticism predict life stress: A longitudinal study from childhood to adulthood. European Neuropsychopharmacology, 26(3), 562–569. https://doi.org/10.1016/j.euroneuro.2015.12.029.

    PubMed  Google Scholar 

  63. Liebl, D. J., Tessarollo, L., Palko, M. E., & Parada, L. F. (1997). Absence of sensory neurons before target innervation in brain-derived neurotrophic factor-, neurotrophin 3-, and TrkC-deficient embryonic mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 17(23), 9113–9121.

    Google Scholar 

  64. Lissek, S., Rabin, S., Heller, R. E., Lukenbaugh, D., Geraci, M., Pine, D. S., & Grillon, C. (2010). Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. American Journal of Psychiatry, 167, 47–55.

    PubMed  Google Scholar 

  65. Lopez-Leon, S., Janssens, A. C., Ladd A. G., Del-Favero, J., Claes, S. J., Oostra, B., & van Duijn, C. M. (2008). Meta-analyses of genetic studies on major depressive disorder. Molecular Psychiatry, 13(8), 772–785. https://doi.org/10.1038/sj.mp.4002088.

    PubMed  Google Scholar 

  66. Lotrich, F. E., Albusaysi, S., & Ferrell, R. E. (2013). Brain-derived neurotrophic factor serum levels and genotype: Association with depression during interferon: A treatment. Neuropsychopharmacology, 38(6), 985–995. https://doi.org/10.1038/npp.2012.263.

    PubMed  PubMed Central  Google Scholar 

  67. Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1(1), 167–195.

    PubMed  Google Scholar 

  68. Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., & Gross, J. J. (2005). The tie that binds? Coherence among emotion experience, behavior, and physiology. Emotion, 5(2), 175–190.

    PubMed  Google Scholar 

  69. Messner, C., & Wanke, M. (2011). Good weather for Schwarz and Clore. Emotion, 11(2), 436–437.

    PubMed  Google Scholar 

  70. Mühlberger, A., Andreatta, M., Ewald, H., Glotzbach-Schoon, E., Tröger, C., Baumann, C., … Pauli, P. (2014). The BDNF Val66Met polymorphism modulates the generalization of cued fear responses to a novel context. Official Publication Of The American College Of Neuropsychopharmacology, 39(5), 1187–1195. https://doi.org/10.1038/npp.2013.320.

    Google Scholar 

  71. Nederhof, E., Bouma, E. M. C., Riese, H., Laceulle, O. M., Ormel, J., & Oldehinkel, A. J. (2010). Evidence for plasticity genotypes in gene-gene-environment interaction: The TRAILS study. Genes, Brain, and Behavior, 9, 968–973.

    PubMed  Google Scholar 

  72. Notaras, M., Hill, R., Gogos, J. A., & van den Buuse, M. (2016). BDNF Val66Met genotype determines hippocampus-dependent behavior via sensitivity to glucocorticoid signaling. Molecular Psychiatry, 21(6), 730–732. https://doi.org/10.1038/mp.2015.152.

    PubMed  Google Scholar 

  73. Notaras, M., Hill, R., & van den Buuse, M. (2015). The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: Progress and controversy. Molecular Psychiatry, 20(8), 916–930. https://doi.org/10.1038/mp.2015.27.

    PubMed  Google Scholar 

  74. Ochsner, K. N., Ray, R. R., Hughes, B., McRae, K., Cooper, J. C., Weber, J., & … Gross, J. J. (2009). Bottom-up and top-down processes in emotion generation: Common and distinct neural mechanisms. Psychological Science, 20(11), 1322–1331.

    PubMed  PubMed Central  Google Scholar 

  75. Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108(3), 483–522. https://doi.org/10.1037/0033-295X.108.3.483.

    PubMed  Google Scholar 

  76. Papa, A., & Bonanno, G. (2008). Smiling in the face of adversity: The interpersonal and intrapersonal functions of smiling. Emotion, 8(1), 1–12. https://doi.org/10.1037/1528-3542.8.1.1.

    PubMed  Google Scholar 

  77. Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage: A polyvagal theory. Psychophysiology, 32(4), 301–318.

    PubMed  Google Scholar 

  78. Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116–143.

    PubMed  Google Scholar 

  79. Porges, S. W. (2009). The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system. Cleveland Clinic Journal of Medicine, 76(Suppl 2), S86-S90.

    PubMed Central  Google Scholar 

  80. Porges, S. W., Doussard-Roosevelt, J. A., & Maiti, A. K. (1994). Vagal tone and the physiological regulation of emotion. Monographs of the Society for Child Development, 59(2–3), 167–186.

    Google Scholar 

  81. Radloff, L. S. (1977). The CES-D scale a self-report depression scale for research in the general population. Applied Psychological Measurement, 3(1), 385–401.

    Google Scholar 

  82. Rafaeli, E., Rogers, G. M., & Revelle, W. (2007). Affective synchrony: Individual differences in mixed emotions. Personality and Social Psychology Bulletin, 33(7), 915–932.

    PubMed  Google Scholar 

  83. Rattiner, L. M., Davis, M., French, C. T., & Ressler, K. J. (2004). Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. Journal of Neuroscience, 24(20), 4796–4806.

    PubMed  Google Scholar 

  84. Rattiner, L. M., Davis, M., & Ressler, K. J. (2004). Differential regulation of brain-derived neurotrophic factor transcripts during the consolidation of fear learning. Learning & Memory, 11(6), 727–731.

    Google Scholar 

  85. Rottenberg, J., Gross, J. J., & Gotlib, I. H. (2005). Emotion context insensitivity in major depressive disorder. Journal of Abnormal Psychology, 114(4), 627–639. https://doi.org/10.1037/0021-843X.114.4.627.

    PubMed  Google Scholar 

  86. Rottenberg, J., & Hindash, A. C. (2015). Emerging evidence for emotion context insensitivity in depression. Current Opinion in Psychology, 4, 1–5.

    Google Scholar 

  87. Rottenberg, J., Kasch, K. L., Gross, J. J., & Gotlib, J. H. (2002). Sadness and amusement reactivity differentially predict concurrent and prospective functioning in major depressive disorder. Emotion, 2(2), 135–146. https://doi.org/10.1037/1528-3542.2.2.135.

    PubMed  Google Scholar 

  88. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161.

    Google Scholar 

  89. Schwarz, N., & Clore, G. L. (1983). Mood, misattribution, and judgments of well-being: Informative and directive functions of affective states. Journal of Personality and Social Psychology, 45(3), 513–523.

    Google Scholar 

  90. Shean, G., & Baldwin, G. (2008). Sensitivity and specificity of depression questionnaires in a college-age sample. The Journal of Genetic Psychology, 169(3), 281–288.

    PubMed  Google Scholar 

  91. Sheppes, G., Scheibe, S., Suri, G., Blechert, J., & Gross, J. J. (2014). Emotion regulation choice: A conceptual framework and supporting evidence. Journal of Experimental Psychology: General, 143, 163–181.

    Google Scholar 

  92. Singh, J. P., Larson, M. G., O’Donnell, C. J., Tsuji, H., Evans, J. C., & Levy, D. (1999). Heritability of heart rate variability: The Framingham Heart Study. Circulation, 99, 225–2254.

    Google Scholar 

  93. Soliman, F., Glatt, C. F., Bath, K. G., Levita, L., Jones, R. M., Pattwell, S. S., Jing, D., Tottenham, N., Amso, D., Somerville, L. H., Voss, H. U., Lover, G., Ballon, D. J., Liston, C., Teslovich, T., van Kempen, T., Lee, F. S., & Casey, B. J. (2010). A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science, 327, 863–867.

    PubMed  PubMed Central  Google Scholar 

  94. Sravish, A. V. S., Tronick, E., Hollenstein, T., & Beeghly, M. (2013). Dyadic flexibility during the face-to-face still-face paradigm: A dynamic systems analysis of its temporal organization. Infant Behavior and Development, 36, 432–437.

    PubMed  Google Scholar 

  95. Stange, J. P., Alloy, L. B., & Fresco, D. M. (2017). Inflexibility as a vulnerability to depression:A systematic qualitative review. Clinical Psychology: Science and Practice. https://doi.org/10.1111/j.1469-8986.2005.00347.x.

    Article  Google Scholar 

  96. Stifter, C. A., Fox, N. A., & Porges, S. W. (1989). Facial expressivity and vagal tone in 5- and 10-month old infants. Infant Behavior and Development, 12(2), 127–137.

    Google Scholar 

  97. Tabor, H. K., Risch, N. J., & Meyers, R. M. (2001). Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nature Reviews Genetics, 7, 263–272.

    Google Scholar 

  98. Terracciano, A., Lobina, M., Piras, M. G., Mulas, A., Cannas, A., Meirelles, O., … Schlessinger, D. (2011). Neuroticism, depressive symptoms, and serum BDNF. Psychosomatic Medicine, 73(8), 638–642. https://doi.org/10.1097/PSY.0b013e3182306a4f.

    PubMed  PubMed Central  Google Scholar 

  99. Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756.

    Google Scholar 

  100. Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141–153. https://doi.org/10.1007/s12160-009-9101-z.

    PubMed  Google Scholar 

  101. Tugade, M. M., & Fredrickson, B. J. (2007). Regulation of positive emotions: Emotion regulation strategies that promote resilience. Journal of Happiness Studies, 8, 311–333.

    Google Scholar 

  102. Van Winkel, M., Peeters, F., van Winkel, R., Kenis, G., Collip, D., Geschwind, N., … Wichers, M. (2014). Impact of variation in the BDNF gene on social stress sensitivity and the buffering impact of positive emotions: Replication and extension of a gene-environment interaction. European Neuropsychopharmacology, 24(6), 930–938. https://doi.org/10.1016/j.euroneuro.2014.02.005.

    PubMed  Google Scholar 

  103. Verhagen, M., van der Meij, A., van Deurzen, PaM., Janzing, J. G. E., Arias-Vásquez, A., Buitelaar, J. K., & Franke, B. (2010). Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: Effects of gender and ethnicity. Molecular Psychiatry, 15(3), 260–271. https://doi.org/10.1038/mp.2008.109.

    PubMed  Google Scholar 

  104. Vrana, S. R., & Rollock, D. (2002). The role of ethnicity, gender, emotional content, and contextual differences in physiological, expressive, and self-reported emotional responses to imagery. Cognition and Emotion, 16(1), 165–192. https://doi.org/10.1080/02699930143000185.

    Google Scholar 

  105. Waugh, C. E., Thompson, R. J., & Gotlib, I. H. (2011). Flexible emotion responsiveness in trait resilience. Emotion, 11, 1059–1067.

    PubMed  PubMed Central  Google Scholar 

  106. Westphal, M., Seivert, N. H., & Bonanno, G. A. (2010). Expressive flexibility. Emotion, 10(1), 92–100.

    PubMed  Google Scholar 

  107. Wichers, M., Kenis, G., Jacobs, N., Myin-Germeys, I., Schruers, K., Mengelers, R., … van Os, J. (2008). The psychology of psychiatric genetics: Evidence that positive emotions in females moderate genetic sensitivity to social stress associated with the BDNF Val-sup-6-sup-6Met polymorphism. Journal of Abnormal Psychology, 117(3), 699–704. https://doi.org/10.1037/a0012909.

    PubMed  Google Scholar 

  108. Yang, A. C., Chen, T. J., Tsai, S. J., Hong, C. J., Kuo, C. H., Yang, C. H., & Kao, K. P. (2010). BDNF Val66Met polymorphism alters sympathovagal balance in healthy subjects. American Journal of Medical Genetics B. Neuropsychiatric Genetics, 153B, 1024–1030.

    PubMed  Google Scholar 

  109. Yu, H., Wang, D., Wang, Y., Liu, T., Lee, F. S., & Chen, Z. (2012). Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants. The Journal of Neuroscience, 32(12), 4092–4101. https://doi.org/10.1523/JNEUROSCI.5048-11.2012.

    PubMed  PubMed Central  Google Scholar 

  110. Zimmerman, P., & Iwanski, A. (2014). Emotion regulation from early adolescence to emerging adulthood and middle adulthood: Age differences, gender differences, and emotion-specific developmental variations. [Special section: Emotion regulation across the life span]. International Journal of Behavioral Development, 38(2), 182–194.

    Google Scholar 

Download references

Funding

Funding was provided by Institute for Clinical and Translational Research, Kent State University and The Applied Psychology Center, Department of Psychological Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karin Maria Nylocks.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nylocks, K.M., Gilman, T.L., Latsko, M.S. et al. Increased parasympathetic activity and ability to generate positive emotion: The influence of the BDNF Val66Met polymorphism on emotion flexibility. Motiv Emot 42, 586–601 (2018). https://doi.org/10.1007/s11031-018-9679-1

Download citation

Keywords

  • Brain-derived neurotrophic factor
  • BDNF Val66Met
  • Parasympathetic activity
  • Emotion flexibility
  • Positive emotions