Motivation and Emotion

, Volume 40, Issue 5, pp 689–702 | Cite as

The shapes associated with approach/avoidance words

  • Carlos VelascoEmail author
  • Alejandro Salgado-Montejo
  • Andrew J. Elliot
  • Andy T. Woods
  • Jorge Alvarado
  • Charles Spence
Original Paper


People prefer curved and symmetrical shapes to their angular and asymmetrical counterparts. While it is known that stimulus valence is central to approach and avoidance motivation, the exact nature of the relationship between curvature/symmetry and approach/avoidance motivation still needs to be clarified. Experiment 1 was designed to investigate whether simple shapes are associated with approach and avoidance words. Participants found it easier to match more symmetrical shapes with approach words. In Experiment 2, symmetry was differentially associated with approach words and was rated significantly higher on the approach dimension than asymmetry. Next, we assessed whether object valence and object curvature (Experiment 3) or symmetry (Experiment 4) would lead to different associations to approach and avoidance words. Only object valence had a significant influence on participants’ ratings, with the positively-valenced objects being more closely associated with approach words than their negatively-valenced counterparts. These results highlight the complex relation between visual properties of objects, their valence, and appetitive and aversive categories.


Symmetry Curvature Approach Avoidance Motivation Valence 


Compliance with ethical standards

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. Apthorp, D., & Bell, J. (2015). Symmetry is less than meets the eye. Current Biology, 25, R267–R268. doi: 10.1016/j.cub.2015.02.017.CrossRefPubMedGoogle Scholar
  2. Bar, M., & Neta, M. (2006). Humans prefer curved visual objects. Psychological Science, 17, 645–648. doi: 10.1111/j.1467-9280.2006.01759.x.CrossRefPubMedGoogle Scholar
  3. Bar, M., & Neta, M. (2007). Visual elements of subjective preference modulate amygdala activation. Neuropsychologia, 45, 2191–2200. doi: 10.1016/j.neuropsychologia.2007.03.008.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barca, L., & Pezzulo, G. (2015). Tracking second thoughts: Continuous and discrete revision processes during visual lexical decision. PLoS One, 10, e0116193. doi: 10.1371/journal.pone.0116193.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrett, L. F. (2006). Valence is a basic building block of emotional life. Journal of Research in Personality, 40, 35–55. doi: 10.1016/j.jrp.2005.08.006.CrossRefGoogle Scholar
  6. Barrett, L. F., & Bar, M. (2009). See it with feeling: Affective predictions during object perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1325–1334. doi: 10.1098/rstb.2008.0312.CrossRefGoogle Scholar
  7. Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews, 20, 1–25. doi: 10.1016/0149-7634(95)00033-B.CrossRefPubMedGoogle Scholar
  8. Carbon, C.-C. (2010). The cycle of preference: Long-term dynamics of aesthetic appreciation. Acta Psychologica, 134, 233–244. doi: 10.1016/j.actpsy.2010.02.004.CrossRefPubMedGoogle Scholar
  9. Chatterjee, A. (2014). The aesthetic brain: How we evolved to desire beauty and enjoy art. New York, NY: Oxford University Press.Google Scholar
  10. Chatterjee, A., & Vartanian, O. (2014). Neuroaesthetics. Trends in Cognitive Sciences, 18, 370–375. doi: 10.1016/j.tics.2014.03.003.CrossRefPubMedGoogle Scholar
  11. Cliff, N. (1996). Answering ordinal questions with ordinal data using ordinal statistics. Multivariate Behavioral Research, 31, 331–350. doi: 10.1207/s15327906mbr3103_4.CrossRefPubMedGoogle Scholar
  12. Collier, G. L. (1996). Affective synesthesia: Extracting emotion space from simple perceptual stimuli. Motivation and Emotion, 20, 1–32. doi: 10.1007/BF02251005.CrossRefGoogle Scholar
  13. Dazkir, S. S., & Read, M. A. (2012). Furniture forms and their influence on our emotional responses toward interior environments. Environment and Behavior, 44, 722–732. doi: 10.1177/0013916511402063.CrossRefGoogle Scholar
  14. Elliot, A. J., Eder, A. B., & Harmon-Jones, E. (2013). Approach/avoidance motivation and emotion: Convergence and divergence. Emotion Review, 5, 308–311. doi: 10.1177/1754073913477517.CrossRefGoogle Scholar
  15. Enquist, M., & Arak, A. (1994). Symmetry, beauty and evolution. Nature, 372, 169–172. doi: 10.1038/372169a0.CrossRefPubMedGoogle Scholar
  16. Enquist, M., & Johnstone, R. A. (1997). Generalization and the evolution of symmetry preferences. Proceedings of the Royal Society of London B: Biological Sciences, 264, 1345–1348.CrossRefGoogle Scholar
  17. Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: An easy way to maximize the accuracy and power of your research. American Psychologist, 63, 591–601. doi: 10.1037/0003-066X.63.7.591.CrossRefPubMedGoogle Scholar
  18. Fetterman, A. K., Ode, S., & Robinson, M. D. (2013). For which side the bell tolls: The laterality of approach/avoidance associative networks. Motivation and Emotion, 37, 33–38. doi: 10.1007/s11031-012-9306-5.CrossRefPubMedGoogle Scholar
  19. Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method. Behavior Research Methods, 42, 226–241. doi: 10.3758/BRM.42.1.226.CrossRefPubMedGoogle Scholar
  20. Freeman, J. B., Dale, R., & Farmer, T. A. (2011). Hand in motion reveals mind in motion. Frontiers in Psychology, 2, 59. doi: 10.3758/BRM.42.1.226.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gómez-Puerto, G., Munar, E., & Nadal, M. (2016). Preference for curvature: A historical and conceptual framework. Frontiers in Human Neuroscience, 9, 712. doi: 10.3389/fnhum.2015.00712.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gordon, K. (1909). Esthetics. New York, NY: Henry Holt.CrossRefGoogle Scholar
  23. Hair, H. I. (1995). Mood categories of lines, colors, words, and music. Bulletin of the Council for Research in Music Education, 127, 99–105.Google Scholar
  24. Hanley, J. A., Negassa, A., de Edwardes, M. D. B., & Forrester, J. E. (2003). Statistical analysis of correlated data using generalized estimating equations: An orientation. American Journal of Epidemiology, 157, 364–375. doi: 10.1093/aje/kwf215.CrossRefPubMedGoogle Scholar
  25. Hardin, J. A., & Hilbe, J. M. (2012). Generalized estimating equations. Boca Raton, FL: Chapman and Hall.Google Scholar
  26. Hopkins, J. R., Kagan, J., Brachfeld, S., Hans, S., & Linn, S. (1976). Infant responsivity to curvature. Child Development, 47, 1166–1171. doi: 10.1111/j.1467-8624.1976.tb02300.x.CrossRefPubMedGoogle Scholar
  27. Jacobsen, T., & Höfel, L. (2003). Descriptive and evaluative judgment processes: Behavioral and electrophysiological indices of processing symmetry and aesthetics. Cognitive, Affective, & Behavioral Neuroscience, 3, 289–299.CrossRefGoogle Scholar
  28. Jacobsen, T., Schubotz, R. I., Höfel, L., & Cramon, D. Y. V. (2006). Brain correlates of aesthetic judgment of beauty. NeuroImage, 29, 276–285. doi: 10.1016/j.neuroimage.2005.07.010.CrossRefPubMedGoogle Scholar
  29. Jadva, V., Hines, M., & Golombok, S. (2010). Infants’ preferences for toys, colors, and shapes: Sex differences and similarities. Archives of Sexual Behavior, 39, 1261–1273. doi: 10.1007/s10508-010-9618-z.CrossRefPubMedGoogle Scholar
  30. Jansson, L., Forkman, B., & Enquist, M. (2002). Experimental evidence of receiver bias for symmetry. Animal Behaviour, 63, 617–621. doi: 10.1006/anbe.2001.1936.CrossRefGoogle Scholar
  31. Jennions, M. D. (1998). The effect of leg band symmetry on female-male association in zebra finches. Animal Behaviour, 55, 61–67. doi: 10.1006/anbe.2001.1936.CrossRefPubMedGoogle Scholar
  32. Kawase, H., Okata, Y., & Ito, K. (2013). Role of huge geometric circular structures in the reproduction of a marine pufferfish. Scientific Reports, 3, 4–8. doi: 10.1038/srep02106.CrossRefGoogle Scholar
  33. Krieglmeyer, R., Deutsch, R., De Houwer, J., & De Raedt, R. (2010). Being moved: Valence activates approach/avoidance behavior independently of evaluation and approach/avoidance intentions. Psychological Science, 21, 607–613. doi: 10.1177/0956797610365131.CrossRefPubMedGoogle Scholar
  34. Larson, C. L., Aronoff, J., & Steuer, E. L. (2012). Simple geometric shapes are implicitly associated with affective value. Motivation and Emotion, 36, 404–413. doi: 10.1007/s11031-011-9249-2.CrossRefGoogle Scholar
  35. Leder, H., & Carbon, C.-C. (2005). Dimensions in appreciation of car interior design. Applied Cognitive Psychology, 19, 603–618. doi: 10.1002/acp.1088.CrossRefGoogle Scholar
  36. Leder, H., Tinio, P. P. L., & Bar, M. (2011). Emotional valence modulates the preference for curved objects. Perception, 40, 649–655. doi: 10.1068/p6845.CrossRefPubMedGoogle Scholar
  37. Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22. doi: 10.1093/biomet/73.1.13.CrossRefGoogle Scholar
  38. Lundholm, H. (1921). The affective tone of lines: Experimental researches. Psychological Review, 28, 43–60. doi: 10.1037/h0072647.CrossRefGoogle Scholar
  39. Magnuson, J. S. (2005). Moving hand reveals dynamics of thought. Proceedings of the National Academy of Sciences of the United States of America, 102, 9995–9996. doi: 10.1073/pnas.0504413102.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Møller, A. P. (1990). Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Animal Behaviour, 40, 1185–1187. doi: 10.1016/S0003-3472(05)80187-3.CrossRefGoogle Scholar
  41. Møller, A. P., & Pomiankowski, A. (1993). Why have birds got multiple sexual ornaments? Behavioral Ecology and Sociobiology, 32, 167–176. doi: 10.1007/BF00173774.Google Scholar
  42. Munar, E., Gómez-Puerto, G., Call, J., & Nadal, M. (2015). Common visual preference for curved contours in humans and great apes. PLoS One, 10(11), e0141106. doi: 10.1371/journal.pone.0141106.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Noguchi, K., Gel, Y. R., Brunner, E., & Konietschke, F. (2012). nparLD: An R software package for the nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical Software, 50, 1–23. doi: 10.18637/jss.v050.i12.CrossRefGoogle Scholar
  44. Oakes, E. J., & Barnard, P. (1994). Fluctuating asymmetry and mate choice in paradise whydahs, Vidua paradisaea: An experimental manipulation. Animal Behaviour, 48, 937–943. doi: 10.1006/anbe.1994.1319.CrossRefGoogle Scholar
  45. Palmer, S. E., Schloss, K. B., & Sammartino, J. (2013). Visual aesthetics and human preference. Annual Review of Psychology, 64, 77–107. doi: 10.1146/annurev-psych-120710-100504.CrossRefPubMedGoogle Scholar
  46. Palumbo, L., Ruta, N., & Bertamini, M. (2015). Comparing angular and curved shapes in terms of implicit associations and approach/avoidance responses. PLoS One, 10(10), e0140043. doi: 10.1371/journal.pone.0140043.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Poffenberger, A. T., & Barrows, B. E. (1924). The feeling value of lines. Journal of Applied Psychology, 8, 187–205. doi: 10.1037/h0073513.CrossRefGoogle Scholar
  48. Reber, R., Schwarz, N., & Winkielman, P. (2004). Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personality and Social Psychology Review, 8, 364–382. doi: 10.1207/s15327957pspr0804_3.CrossRefPubMedGoogle Scholar
  49. Rodríguez, I., Gumbert, A., De Ibarra, N. H., Kunze, J., & Giurfa, M. (2004). Symmetry is in the eye of the “beeholder”: Innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften, 91, 374–377. doi: 10.1007/s00114-004-0537-5.PubMedGoogle Scholar
  50. Salgado-Montejo, A., Tapia Leon, I., Elliot, A. J., Salgado, C. J., & Spence, C. (2015). Smiles over frowns: When curved lines influence product preference. Psychology and Marketing, 32, 771–781. doi: 10.1002/mar.20817.CrossRefGoogle Scholar
  51. Sasaki, Y., Vanduffel, W., Knutsen, T., Tyler, C., & Tootell, R. (2005). Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 102, 3159–3163. doi: 10.1073/pnas.0500319102.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shen, X., Wan, X., Mu, B., & Spence, C. (2015). Searching for triangles: An extension to food and packaging. Food Quality and Preference, 44, 26–35. doi: 10.1016/j.foodqual.2015.03.015.CrossRefGoogle Scholar
  53. Shepherd, K., & Bar, M. (2011). Preference for symmetry: Only on Mars? Perception, 40, 1254. doi: 10.1068/p7057.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Silvia, P. J. (2009). Looking past pleasure: Anger, confusion, disgust, pride, surprise, and other unusual aesthetic emotions. Psychology of Aesthetics, Creativity, and the Arts, 3, 48–51. doi: 10.1037/a0014632.CrossRefGoogle Scholar
  55. Silvia, P. J., & Barona, C. M. (2009). Do people prefer curved objects? Angularity, expertise, and aesthetic preference. Empirical Studies of the Arts, 27, 25–42. doi: 10.2190/EM.27.1.b.CrossRefGoogle Scholar
  56. Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time cognition. Current Directions in Psychological Science, 15, 207–211. doi: 10.1111/j.1467-8721.2006.00437.x.CrossRefGoogle Scholar
  57. Stewart, I. (2013). Symmetry: A very short introduction. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  58. Thornhill, R., & Gangestad, S. (1999). Facial attractiveness. Trends in Cognitive Sciences, 3, 452–460. doi: 10.1016/S1364-6613(99)01403-5.CrossRefPubMedGoogle Scholar
  59. Tinio, P. P., & Leder, H. (2009). Just how stable are stable aesthetic features? Symmetry, complexity, and the jaws of massive familiarization. Acta Psychologica, 130, 241–250.CrossRefPubMedGoogle Scholar
  60. Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., Leder, H., Modroño, C., et al. (2013). Impact of contour on aesthetic judgments and approach–avoidance decisions in architecture. Proceedings of the National Academy of Sciences of the United States of America, 110, 10446–10453. doi: 10.1073/pnas.1301227110.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wagemans, J. (1995). Detection of visual symmetries. Spatial Vision, 9, 9–32. doi: 10.1163/156856895X00098.CrossRefPubMedGoogle Scholar
  62. Watson, P. J., & Thornhill, R. (1994). Fluctuating asymmetry and sexual selection. Trends in Ecology and Evolution, 9, 21–25. doi: 10.1016/0169-5347(94)90227-5.CrossRefPubMedGoogle Scholar
  63. Westerman, S. J., Gardner, P. H., Sutherland, E. J., White, T., Jordan, K., Watts, D., & Wells, S. (2012). Product design: Preference for rounded versus angular design elements. Psychology and Marketing, 29, 595–605. doi: 10.1002/mar.20546.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Carlos Velasco
    • 1
    • 2
    Email author
  • Alejandro Salgado-Montejo
    • 1
    • 3
  • Andrew J. Elliot
    • 4
  • Andy T. Woods
    • 1
    • 5
  • Jorge Alvarado
    • 6
  • Charles Spence
    • 1
  1. 1.Crossmodal Research Laboratory, Department of Experimental PsychologyUniversity of OxfordOxfordUK
  2. 2.Imagineering InstituteIskandarMalaysia
  3. 3.Universidad de La SabanaChíaColombia
  4. 4.Department of Clinical and Social Sciences in PsychologyUniversity of RochesterRochesterUSA
  5. 5.XperimentSurreyUK
  6. 6.Department of Industrial EngineeringPontificia Universidad JaverianaBogotáColombia

Personalised recommendations